Examination of Marine-Based Cultivation of Three Demosponges for Acquiring Bioactive Marine Natural Products

نویسندگان

  • Oded Bergman
  • Boaz Mayzel
  • Matthew A. Anderson
  • Muki Shpigel
  • Russell T. Hill
  • Micha Ilan
چکیده

Marine sponges are an extremely rich and important source of natural products. Mariculture is one solution to the so-called "supply problem" that often hampers further studies and development of novel compounds from sponges. We report the extended culture (767 days) at sea in depths of 10 and 20 m of three sponge species: Negombata magnifica, Amphimedon chloros and Theonella swinhoei that produce latrunculin-B, halitoxin and swinholide-A, respectively. Since sponge-associated microorganisms may be the true producers of many of the natural products found in sponges and also be linked to the health of the sponges, we examined the stability of the bacterial communities in cultured versus wild sponges. Growth rate of the sponges (ranging from 308 to 61 and -19 (%)(year(-1)) in N. magnifica, A. chloros and T. swinhoei, respectively) differed significantly between species but not between the two depths at which the species were cultivated. Survivorship varied from 96% to 57%. During culture all species maintained the content of the desired natural product. Denaturing gradient gel electrophoresis analysis of the sponge-associated bacterial consortia revealed that differences existed between cultured and wild sponges in T. swinhoei and A. chloros but the communities remained quite stable in N. magnifica. The cultivation technique for production of natural products was found to be most appropriate for N. magnifica, while for T. swinhoei and A. chloros it was less successful, because of poorer growth and survival rates and shifts in their bacterial consortia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring marine resources for bioactive compounds.

Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally...

متن کامل

Persian Gulf Bivalves: Bioactive Pharmaceutical Compounds and Biomedical Applications

Bivalves are a class of marine mollusks with high nutritional value in addition to various medicinal products. The Persian Gulf is home to 224 species from 29 families of bivalves identified so far. Based on research conducted in the Persian Gulf or other parts of the world, bioactive compounds exist in their shell and soft tissue. In this review article, we reviewed biomedical research related...

متن کامل

Brominated Skeletal Components of the Marine Demosponges, Aplysina cavernicola and Ianthella basta: Analytical and Biochemical Investigations

Demosponges possess a skeleton made of a composite material with various organic constituents and/or siliceous spicules. Chitin is an integral part of the skeleton of different sponges of the order Verongida. Moreover, sponges of the order Verongida, such as Aplysina cavernicola or Ianthella basta, are well-known for the biosynthesis of brominated tyrosine derivates, characteristic bioactive na...

متن کامل

Antimicrobial bioactive compounds from marine algae: A mini review

Research on natural products from marine algae has increased dramatically since last few decades. Marine natural products provide a rich source of chemically diverse compounds which have significant potential to be developed as novel types of therapeutic agents. Certain marine products diverse in biological and therapeutic potential have been found to exhibit significant antimicrobial effects a...

متن کامل

Anti-MRSA activity of a bioactive compound produced by a marine Streptomyces and its optimization using statistical experimental design

Objective(s): To address the alarming problem of methicillin-resistant Staphylococcus aureus (MRSA), herein, a marine Streptomyces capable of producing an anti-MRSA compound has been studied.Materials and Methods: Strain MN41 was morphologically and physiologically characterized and then, molecularly identified using 16SrRNA analysis. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2011