A Refinement of the Cameron-erdős Conjecture

نویسنده

  • NOGA ALON
چکیده

In this paper we study sum-free subsets of the set {1, . . . , n}, that is, subsets of the first n positive integers which contain no solution to the equation x+ y = z. Cameron and Erdős conjectured in 1990 that the number of such sets is O(2). This conjecture was confirmed by Green and, independently, by Sapozhenko. Here we prove a refined version of their theorem, by showing that the number of sum-free subsets of [n] of size m is 2 (dn/2e m ) , for every 1 6 m 6 dn/2e. For m > √ n, this result is sharp up to the constant implicit in the O(·). Our proof uses a general bound on the number of independent sets of size m in 3-uniform hypergraphs, proved recently by the authors, and new bounds on the number of integer partitions with small sumset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cameron–Erdős Conjecture

A subset A of the integers is said to be sum-free if there do not exist elements x, y, z ∈ A with x+y = z. It is shown that the number of sum-free subsets of {1, . . . , N} is O(2N/2), confirming a well-known conjecture of Cameron and Erdős.

متن کامل

Independent Sets in Almost-regular Graphs and the Cameron-erdős Problem for Non-invariant Linear Equations

We propose a generalisation of the Cameron-Erdős conjecture for sumfree sets to arbitrary non-translation invariant linear equations over Z in three or more variables and, using well-known methods from graph theory, prove a weak form of the conjecture for a class of equations where the structure of the maximum-size sets avoiding solutions to the equation has been previously obtained.

متن کامل

On a conjecture of Erdős and Turán for additive basis

An old conjecture of Erdős and Turán states that the representation function of an additive basis of the positive integers can not be bounded. We survey some results related to this still wide open conjecture.

متن کامل

Erdős-Szemerédi Sunflower conjecture

I will give two proofs of the Erdős-Szemerédi Sunflower conjecture: a proof that uses the cap-set problem from Alon et al. [1] and a proof from Naslund and Sawin [5] that uses the slice-rank method. I will also show how Naslund and Sawin [5] apply the same ideas in an attempt towards the (stronger, unproved) Erdős-Rado Sunflower conjecture. A brief note on the connection to algorithms for fast ...

متن کامل

On a Question of Erdős and Graham

In this note, we sharpen work of Ulas to provide what is, in some sense, the minimal counterexample to a “conjecture” of Erdős and Graham about square values of products of disjoint blocks of consecutive integers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012