A fixed-point algorithm for blind source separation with nonlinear autocorrelation
نویسندگان
چکیده
This paper addresses blind source separation (BSS) problem when source signals have the temporal structure with nonlinear autocorrelation. Using the temporal characteristics of sources, we develop an objective function based on the nonlinear autocorrelation of sources. Maximizing the objective function, we propose a fixed-point source separation algorithm. Furthermore, we give some mathematical properties of the algorithm. Computer simulations for sources with square temporal autocorrelation and the real-world applications in the analysis of the magnetoencephalographic recordings (MEG) illustrate the efficiency of the proposed approach. Thus, the presented BSS algorithm, which is based on the nonlinear measure of temporal autocorrelation, provides a novel statistical property to perform BSS. © 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Blind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملAn Lms Based Blind Source Separation Algorithm Using a Fast Nonlinear Autocorrelation Method
Blind source separation (BSS) is the technique that anyone can separate the latent data from their mixtures without any knowledge about the mixing process, but using some statistical properties of original source signals. In this paper we will use the nonlinear autocorrelation function as an object function to separate the source signals from the mixing signals. Maximization of the object funct...
متن کاملA Fast Algorithm for Blind Separation of Complex Valued Signals with Nonlinear Autocorrelation
—Blind source separation of complex valued signals has been a hot issue especially in the field of multi-input/multi-output (MIMO) digital communications. Many contrast functions based on the nonlinear structure of the signals have been proposed to extract the unknown sources. However, these researches usually focused on the real-valued case, but ignoring the complex problem. This paper propos...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008