Lower bounds for the Prékopa-Leindler deficit by some distances modulo translations

نویسندگان

  • Dorin BUCUR
  • Ilaria FRAGALÀ
چکیده

We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the addition of an extra-term depending on a distance modulo translations. Our results hold true on suitable classes of functions of n variables. They are based upon two different kinds of 1dimensional refinements: the former is the one obtained by K.M. Ball and K. Böröczky in [4] and involves an L-type distance on log-concave functions, the latter is new and involves the transport map onto the Lebesgue measure. Starting from each of these 1-dimensional refinements, we obtain an n-dimensional counterpart by exploiting a generalized version of the Cramér-Wold Theorem. 2010MSC: 52A40, 26D10, 39B62.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of some versions of the Prékopa-Leindler inequality

Two consequences of the stability version of the one dimensional Prékopa-Leindler inequality are presented. One is the stability version of the Blaschke-Santaló inequality, and the other is a stability version of the Prékopa-Leindler inequality for even functions in higher dimensions, where a recent stability version of the Brunn-Minkowski inequality is also used in an essential way. 1 The prob...

متن کامل

Stability of the Prékopa-Leindler inequality

We prove a stability version of the Prékopa-Leindler inequality. 1 The problem Our main theme is the Prékopa-Leindler inequality, due to A. Prékopa [14] and L. Leindler [13]. Soon after its proof, the inequality was generalized in A. Prékopa [15] and [16], C. Borell [7], and in H.J. Brascamp, E.H. Lieb [8]. Various applications are provided and surveyed in K.M. Ball [1], F. Barthe [5], and R.J....

متن کامل

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on Rn, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly conve...

متن کامل

BORELL’S GENERALIZED PRÉKOPA-LEINDLER INEQUALITY: A SIMPLE PROOF By

We present a simple proof of Christer Borell’s general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell’s inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang. 2010 Mathematics Subject Classification. Primary 28A75, 52A40.

متن کامل

Borell’s generalized Prékopa-Leindler inequality: A simple proof

We present a simple proof of Christer Borell’s general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell’s inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013