A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization
نویسندگان
چکیده
The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as "lipid rafts." Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248) with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01). HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05), and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05). Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.
منابع مشابه
Antibacterial activity of lactobacilli probiotics on clinical strains of Helicobacter pylori
Objective(s): Treatment of Helicobacter pylori infection by common drugs may be associated with several problems such as antimicrobial resistance to commonly used antibiotics and side effects of employed drugs. Therefore, exploration of non-chemical compounds which are safer than chemical ones is becoming important as an alternative therapy. The purpose of this study w...
متن کاملRole of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer
Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...
متن کاملPathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells
Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...
متن کاملInvestigation of VPR2 gene expression in AGS cells transfected with recombinant vector carrier of tagD gene of Helicobacter pyloriExpression of VPR2 Gene in AGS
Backgrounds: Helicobacter pylori is associated with the development of gastric cancer. The thiol peroxidase enzyme, encoded by the tagD gene in this bacterium, plays an important role in bacterial attachment and colonization in the human stomach. The aim of this study was to investigate the expression of VPR2 gene in AGS cells transfected with recombinant vector of helicobacter pylori tagD gene...
متن کاملHelicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells.
Infection with Helicobacter pylori cag pathogenicity island (cagPAI)-positive strains is associated with more destructive tissue damage and an increased risk of severe disease. The cagPAI encodes a type IV secretion system (TFSS) that delivers the bacterial effector molecules CagA and peptidoglycan into the host cell cytoplasm, thereby inducing responses in host cells. It was previously shown t...
متن کامل