Inhibition of protein kinase C blocks two components of LTP persistence, leaving initial potentiation intact.

نویسندگان

  • P A Colley
  • F S Sheu
  • A Routtenberg
چکیده

Protein kinase C (PKC) activity is increased following hippocampal long-term potentiation (LTP; Akers et al., 1986). A similar increase in PKC activity is measured following the induction of a long-lasting potentiation with abbreviated high-frequency stimulation (HFS) in combination with PKC-activating phorbol esters (Colley et al., 1989). Because phorbol esters have no effect on the initial potentiation produced with HFS, and because PKC activity appears to be related to the persistence of LTP and not to the initial change, we concluded that PKC regulates a post-initiation component of LTP. To define the time domain in which PKC activation is necessary for LTP, we studied the effect of the PKC inhibitors polymyxin B (PMXB) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) micropressure ejected at different time points before and after the induction of LTP. LTP was produced in intact rats with HFS of the perforant path, and inhibitor ejections were made in the molecular layer of the dentate gyrus. PMXB, which at lower doses is a selective inhibitor of PKC, had no effect on initial potentiation, yet caused decay of the potentiated response to baseline within 2 hr. Decay occurred when PMXB was ejected 15 min before and 15 and 30 min after HFS. PMXB, at either low or high doses, was ineffective in blocking LTP persistence at time points greater than 30 min after HFS. Low doses of H-7 produced similar effects to those of PMXB. However, in contrast to a high dose of PMXB, a high dose of H-7 inhibited the persistence of LTP when delivered 240 min after HFS.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase.

Fear conditioning has received extensive experimental attention. However, little is known about the molecular mechanisms that underlie fear memory consolidation. Previous studies have shown that long-term potentiation (LTP) exists in pathways known to be relevant to fear conditioning and that fear conditioning modifies neural processing in these pathways in a manner similar to LTP induction. Th...

متن کامل

Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning.

In the present experiments, we characterized the action of human/rat corticotropin-releasing factor (h/rCRF) and acute stress (1 hr of immobilization) on hippocampus-dependent learning and on synaptic plasticity in the mouse hippocampus. We first showed that h/rCRF application and acute stress facilitated (primed) long-term potentiation of population spikes (PS-LTP) in the mouse hippocampus and...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Proteasome regulates the mediators of cytoplasmic polyadenylation signaling during late-phase long-term potentiation.

The ubiquitin-proteasome pathway is essential for long-term synaptic plasticity, but its exact roles remain unclear. Previously we established that proteasome inhibition increased the early, induction part of late-phase long-term potentiation (L-LTP) but blocks the late, maintenance part. Our prior work also showed that the proteasome modulates components of the mammalian target of rapamycin pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 1990