Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics.
نویسندگان
چکیده
New therapeutic strategies are needed to treat infections caused by drug-resistant bacteria, which constitute a major growing threat to human health. Here, we use a high-throughput technology to identify combinatorial genetic perturbations that can enhance the killing of drug-resistant bacteria with antibiotic treatment. This strategy, Combinatorial Genetics En Masse (CombiGEM), enables the rapid generation of high-order barcoded combinations of genetic elements for high-throughput multiplexed characterization based on next-generation sequencing. We created ∼ 34,000 pairwise combinations of Escherichia coli transcription factor (TF) overexpression constructs. Using Illumina sequencing, we identified diverse perturbations in antibiotic-resistance phenotypes against carbapenem-resistant Enterobacteriaceae. Specifically, we found multiple TF combinations that potentiated antibiotic killing by up to 10(6)-fold and delivered these combinations via phagemids to increase the killing of highly drug-resistant E. coli harboring New Delhi metallo-beta-lactamase-1. Moreover, we constructed libraries of three-wise combinations of transcription factors with >4 million unique members and demonstrated that these could be tracked via next-generation sequencing. We envision that CombiGEM could be extended to other model organisms, disease models, and phenotypes, where it could accelerate massively parallel combinatorial genetics studies for a broad range of biomedical and biotechnology applications, including the treatment of antibiotic-resistant infections.
منابع مشابه
Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis
Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the...
متن کاملAssessment of ultrasound irradiation on inactivation of gram negative and positive bacteria isolated from hospital in aqueous solution
Microbial contamination of water poses a major threat to public health. With the emergence of microorganisms resistant to multiple antimicrobial agents, there is increased request for promotion of disinfection methods. Since ultrasound wave (US) exhibits antibacterial activities on bacteria, the aim of this study was to evaluate the antimicrobial effect of low frequency (37 kHz) ultrasound on P...
متن کاملSynergistic Effect of Probiotic Bacteria and Antibiotics on Antibiotic-resistant Strains of Pseudomonas Aeruginosa Isolated from Patients with Burn Wounds
Background: Burn infections are one of the leading causes of death in the world. Antibiotic resistance is a major concern among the medical community. In this study, we investigated the effect of common probiotic strains on multidrug-resistant Pseudomonas aeruginosa strains. Methods: Strains of Pseudomonas aeruginosa from burn wounds of patients were isolated. Then pathogens were biochemically ...
متن کاملEngineering Synthetic Bacteriophage to Combat Antibiotic-Resistant Bacteria
Antibiotic resistance is a rapidly evolving problem that is not being adequately met by new antimicrobial drugs. Thus, there is a pressing need for effective antibacterial therapies that can be adapted against antibiotic-resistant bacteria. Here, we engineered synthetic bacteriophage to combat antibiotic-resistant bacteria by overexpressing proteins and attacking gene networks which are not dir...
متن کاملExploiting genomics, genetics and chemistry to combat antibiotic resistance.
To address the worsening problem of antibiotic-resistant bacteria there is an urgent need to develop new antibiotics. Comparative genomics and molecular genetics are being applied to produce lists of essential new targets for compound screening programmes. Combinatorial chemistry and structural biology are being applied to rapidly explore and optimize the interactions between lead compounds and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 34 شماره
صفحات -
تاریخ انتشار 2014