Extended Fuzzy Cognitive Maps
نویسنده
چکیده
Fuzzy Cognitive Maps (FCMs) have been proposed to represent causal reasoning by using numeric processing. They graphically represent uncertain causal reasoning. In the resonant states, there emerges a limit cycle or a hidden pattern, which is a FCM inference. However, there are some shortcomings concerned with knowledge representation in the conventional FCMs. In this paper, we propose Extended Fuzzy Cognitive Maps (E-FCMs) to represent causal relationships more naturally. The features of the E-FCMs are: there are nonlinear membership functions, conditional weights, and time delay weights. Computer simulation results indicate the effectiveness of the E-FCMs.
منابع مشابه
Learning Fuzzy Cognitive Maps by a Hybrid Method Using Nonlinear Hebbian Learning and Extended Great Deluge Algorithm
Fuzzy Cognitive Maps (FCM) is a technique to represent models of causal inference networks. Data driven FCM learning approach is a good way to model FCM. We present a hybrid FCM learning method that combines Nonlinear Hebbian Learning (NHL) and Extended Great Deluge Algorithm (EGDA), which has the efficiency of NHL and global optimization ability of EGDA. We propose using NHL to train FCM at ...
متن کاملZ-Cognitive Map: An Integrated Cognitive Maps and Z-Numbers Approach under Cognitive Information
Usually, in real-world engineering problems, there are different types of uncertainties about the studied variables, which can be due to the specific variables under investigation or interaction between them. Fuzzy cognitive maps, which addresses the cause-effect relation between variables, is one of the most common models for better understanding of the problems, especially when the quantitati...
متن کاملRule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps – A Comparative Study
This paper focus on the comparison between Rule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps. The paper shows FCM limitations to represent nonmonotonic non-symmetric causal relations, presents results that exhibit the stability of RBFCM in systems where FCM is not stable due to its non-fuzzy inherent nature and presents RBFCM potential to model qualitative real-world dynamic systems.
متن کاملUsing Fuzzy Cognitive Maps for Prediction of Knowledge Worker Productivity Based on Real Coded Genetic Algorithm
Improving knowledge worker productivity has been one of the most important tasks of the century. However, we have few measures or management interventions to make such improvement possible, and it is difficult to identify patterns that should be followed by knowledge workers because systems and processes in an organization are often regarded as a death blow to creativity. In this paper, we se...
متن کاملDeveloping Initial State Fuzzy Cognitive Maps with Self-Organizing Maps
Using soft computing methods, the authors collect and process relevant user-generated information from the web. Through the use of self-organizing maps, fuzzy cognitive maps are constructed. The fuzzy cognitive map is a generated representation of the emergent web semantics of the dataset. In the next step, the fuzzy cognitive maps are enriched with related lexical content and stored in a graph...
متن کامل