The N-point Functions for Intersection Numbers on Moduli Spaces of Curves
نویسندگان
چکیده
Abstract. Using the celebrated Witten-Kontsevich theorem, we prove a recursive formula of the n-point functions for intersection numbers on moduli spaces of curves. It has been used to prove the Faber intersection number conjecture and motivated us to find some conjectural vanishing identities for Gromov-Witten invariants. The latter has been proved recently by X. Liu and R. Pandharipande. We also give a combinatorial interpretation of n-point functions in terms of summation over binary trees.
منابع مشابه
A Proof of the Faber Intersection Number Conjecture
We prove the Faber intersection number conjecture and other more general results by using a recursion formula of n-point functions for intersection numbers on moduli spaces of curves. We also present several conjectural properties of Gromov-Witten invariants generalizing results on intersection numbers.
متن کاملNew results of intersection numbers on moduli spaces of curves.
We present a series of results we obtained recently about the intersection numbers of tautological classes on moduli spaces of curves, including a simple formula of the n-point functions for Witten's tau classes, an effective recursion formula to compute higher Weil-Petersson volumes, several new recursion formulae of intersection numbers and our proof of a conjecture of Itzykson and Zuber conc...
متن کاملGeometry of Meromorphic Functions and Intersections on Moduli Spaces of Curves
In this paper we study relations between intersection numbers on moduli spaces of curves and Hurwitz numbers. First, we prove two formulas expressing Hurwitz numbers of (generalized) polynomials via intersections on moduli spaces of curves. Then we show, how intersection numbers can be expressed via Hurwitz numbers. And then we obtain an algorithm expressing intersection numbers 〈τn,m ∏r−1 i=1 ...
متن کاملRecursions and Asymptotics of Intersection Numbers
We establish the asymptotic expansion of certain integrals of ψ classes on moduli spaces of curves Mg,n when either the g or n goes to infinity. Our main tools are cut-join type recursion formulae from the WittenKontsevich theorem as well as asymptotics of solutions to the first Painlevé equation. We also raise a conjecture on large genus asymptotics for n-point functions of ψ classes and parti...
متن کاملNew Properties of the Intersection Numbers on Moduli Spaces of Curves
We present certain new properties about the intersection numbers on moduli spaces of curves Mg,n. In particular we prove a new identity, which together with a conjectural identity implies the famous Faber’s conjecture about certain values of intersection numbers [1]. These new identities are much simpler than Faber’s identity and clarified the mysterious constant in Faber’s conjecture. We also ...
متن کامل