Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

نویسندگان

  • Arsa Thammahong
  • Alayna K. Caffrey-Card
  • Sourabh Dhingra
  • Joshua J. Obar
  • Robert A. Cramer
چکیده

Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.IMPORTANCE Human fungal infections are increasing globally due to HIV infections and increased use of immunosuppressive therapies for many diseases. Therefore, new antifungal drugs with reduced side effects and increased efficacy are needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic fungi and is absent in humans. Components of the trehalose biosynthesis pathway are important for the virulence of human-pathogenic fungi, including Aspergillus fumigatus Consequently, it has been proposed that components of this pathway are potential targets for antifungal drug development. However, how trehalose biosynthesis influences the fungus-host interaction remains enigmatic. One phenotype associated with fungal trehalose biosynthesis mutants that remains enigmatic is cell wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall homeostasis through modulation of chitin synthase localization and activity. As the cell wall is a current and promising therapeutic target for fungal infections, understanding the role of trehalose biosynthesis in cell wall homeostasis and virulence is expected to help define new therapeutic opportunities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens.

The interaction between inhibitors of components of the fungal cell wall, glucan and chitin, was studied in vitro with the respective synthase enzyme inhibitors LY 303366 and nikkomycin Z. With Aspergillus fumigatus synergy was noted for inhibition and killing, and synergistic activity was also noted for some isolates of other species presently regarded as difficult to treat.

متن کامل

Differential Aspergillus lentulus echinocandin susceptibilities are Fksp independent.

The recently described species Aspergillus lentulus exhibits differential and reduced susceptibilities to echinocandins and other antifungal drugs in vitro. A. lentulus isolates overall are less susceptible to caspofungin, although they maintain susceptibility to anidulafungin and micafungin. Mutations or polymorphisms in fks, the gene encoding the catalytic subunit of β-1,3-glucan synthase, ar...

متن کامل

Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins.

Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin...

متن کامل

Macrophage reporter cell assay for screening immunopharmacological activity of cell wall-active antifungals.

Antifungal exposure can elicit immunological effects that contribute to activity in vivo, but this activity is rarely screened in vitro in a fashion analogous to MIC testing. We used RAW 264.7 murine macrophages that express a secreted embryonic alkaline phosphatase (SEAP) gene induced by transcriptional activation of NF-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacolo...

متن کامل

Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus.

The cell wall of Aspergillus fumigatus is composed of a branched beta1,3 glucan covalently bound to chitin, beta1,3, beta1,4 glucans, and galactomannan, that is embedded in an amorphous cement composed of alpha1,3 glucan, galactomannan and polygalactosamin. The mycelial cell wall of A. fumigatus is very different from the yeast Saccharomyces cerevisiae cell wall, and in particular lacks beta1,6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017