In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4

نویسندگان

  • Marvin E. Adams
  • Heather A. Mueller
  • Stanley C. Froehner
چکیده

alpha-Syntrophin is a scaffolding adapter protein expressed primarily on the sarcolemma of skeletal muscle. The COOH-terminal half of alpha-syntrophin binds to dystrophin and related proteins, leaving the PSD-95, discs-large, ZO-1 (PDZ) domain free to recruit other proteins to the dystrophin complex. We investigated the function of the PDZ domain of alpha-syntrophin in vivo by generating transgenic mouse lines expressing full-length alpha-syntrophin or a mutated alpha-syntrophin lacking the PDZ domain (Delta PDZ). The Delta PDZ alpha-syntrophin displaced endogenous alpha- and beta 1-syntrophin from the sarcolemma and resulted in sarcolemma containing little or no syntrophin PDZ domain. As a consequence, neuronal nitric oxide synthase (nNOS) and aquaporin-4 were absent from the sarcolemma. However, the sarcolemmal expression and distribution of muscle sodium channels, which bind the alpha-syntrophin PDZ domain in vitro, were not altered. Both transgenic mouse lines were bred with an alpha-syntrophin-null mouse which lacks sarcolemmal nNOS and aquaporin-4. The full-length alpha-syntrophin, not the Delta PDZ form, reestablished nNOS and aquaporin-4 at the sarcolemma of these mice. Genetic crosses with the mdx mouse showed that neither transgenic syntrophin could associate with the sarcolemma in the absence of dystrophin. Together, these data show that the sarcolemmal localization of nNOS and aquaporin-4 in vivo depends on the presence of a dystrophin-bound alpha-syntrophin PDZ domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal Nitric oxide synthase.

Neuronal nitric oxide synthase (nNOS) is abundantly expressed in skeletal muscle where it associates with the dystrophin complex at the sarcolemma by binding to the PDZ domain of alpha-syntrophin. Nitric oxide (NO) produced by skeletal muscle nNOS is proposed to regulate blood flow in exercising muscle by diffusing from the skeletal muscle fibers to the nearby microvessels where it attenuates a...

متن کامل

Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy.

Sarcolemma-associated neuronal NOS (nNOS) plays a critical role in normal muscle physiology. In Duchenne muscular dystrophy (DMD), the loss of sarcolemmal nNOS leads to functional ischemia and muscle damage; however, the mechanism of nNOS subcellular localization remains incompletely understood. According to the prevailing model, nNOS is recruited to the sarcolemma by syntrophin, and in DMD thi...

متن کامل

Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex.

The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PD...

متن کامل

Energetic determinants of internal motif recognition by PDZ domains.

PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with t...

متن کامل

Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein.

The Aquaporin-4 (AQP4) water channel contributes to brain water homeostasis in perivascular astrocyte endfeet where it is concentrated. We postulated that AQP4 is tethered at this site by binding of the AQP4 C terminus to the PSD95-Discs large-ZO1 (PDZ) domain of syntrophin, a component of the dystrophin protein complex. Chemical cross-linking and coimmunoprecipitations from brain demonstrated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2001