Full Edge-friendly Index Sets of Complete Bipartite Graphs

نویسندگان

  • WAI CHEE SHIU
  • Tommy R. Jensen
  • W. C. Shiu
چکیده

Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index of G under an edge-friendly labeling f . The full edge-friendly index set of a graph G is the set of all possible edge-friendly indices of G. Full edge-friendly index sets of complete bipartite graphs will be determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

A Solution to the Edge-Balanced Index Set Problem for Complete Odd Bipartite Graphs

In 2009, Kong, Wang, and Lee began work on the problem of finding the edgebalanced index sets of complete bipartite graphs Km,n by solving the cases where n = 1, 2, 3, 4, and 5, and also the case where m = n. In 2011, Krop and Sikes expanded upon that work by finding EBI(Km,m−2a) for odd m > 5 and 1 ≤ a ≤ m−3 4 . In this paper, we provide a general solution to the edge-balanced index set proble...

متن کامل

Full Friendly Index Sets of Slender and Flat Cylinder Graphs

Let G = (V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f∗ : E → Z2 defined by f∗(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef (i) = |f∗−1(i)|. A labeling f is called friendly if |vf (1)− vf (0)| ≤ 1. The full friendly index set of G consists all possible differences between the number of edges labeled by 1 and the number of edge...

متن کامل

On vertex balance index set of some graphs

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

متن کامل

Strength of strongest dominating sets in fuzzy graphs

A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017