Bayesian Model Choice using Coupled ABC
نویسنده
چکیده
In Neal (2010), a novel Approximate Bayesian Computation (ABC) algorithm, coupled ABC, was introduced. This paper shows how coupled ABC can be used in an efficient manner for model choice in a Bayesian framework. The methodology is applied to Gibbs random fields and stochastic epidemic models. Furthermore a very efficient simulation procedure for Gibbs random fields with a given sufficient summary statistics is described.
منابع مشابه
Lack of confidence in ABC model choice
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. (2009, Bayesian Ana 3:427–442) advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on a inter-model sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phyl...
متن کاملLack of confidence in approximate Bayesian computation model choice.
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. [(2009) Bayesian Anal 3:427-442] advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on an intermodel sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of ph...
متن کاملWhy approximate Bayesian computational (ABC) methods cannot handle model choice problems
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favourite tool for the analysis of complex stochastic models, primarily in population genetics but also in financial analyses. We advocated in Grelaud et al. (2009) the use of ABC for Bayesian model choice in the specific case of Gibbs random fields (GRF), relying on a sufficiency property mainly enjoye...
متن کاملDeviance Information Criteria for Model Selection in Approximate Bayesian Computation
Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian inference using statistical summaries and computer simulations. ABC has become popular in evolutionary genetics and in other branches of biology. However model selection under ABC algorithms has been a subject of intense debate during the recent years. Here we propose novel approaches to model selection based o...
متن کاملEfficient likelihood-free Bayesian Computation for household epidemics
Considerable progress has been made in applying Markov chain Monte Carlo (MCMC) methods to the analysis of epidemic data. However, this likelihood based method can be inefficient due to the limited data available concerning an epidemic outbreak. This paper considers an alternative approach to studying epidemic data using Approximate Bayesian Computation (ABC) methodology. ABC is a simulation-ba...
متن کامل