Computation of class numbers of quadratic number fields
نویسنده
چکیده
We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers of imaginary abelian number fields.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملThe parallelized Pollard kangaroo method in real quadratic function fields
We show how to use the parallelized kangaroo method for computing invariants in real quadratic function fields. Specifically, we show how to apply the kangaroo method to the infrastructure in these fields. We also show how to speed up the computation by using heuristics on the distribution of the divisor class number, and by using the relatively inexpensive baby steps in the real quadratic mode...
متن کاملClass Group Calculations
In particular, the ideal class group is generated by the prime ideals with norm not exceeding this bound. We will use the Minkowski bound to compute class groups of various quadratic fields. (The computation of class numbers, rather than class groups, can be obtained by analytic methods. If the class number is prime, then of course the class group is cyclic, but we don’t know the class group ri...
متن کاملExplicit Construction of the Hilbert Class Fields of Imaginary Quadratic Fields with Class Numbers 7 and 11
Motivated by a constructive realization of dihedral groups of prime degree as Galois group over the field of rational numbers, we give an explicit construction of the Hilbert class fields of some imaginary quadratic fields with class numbers 7 and 11. This was done by explicitly evaluating the elliptic modular j -invariant at each representative of the ideal class of an imaginary quadratic fiel...
متن کاملL - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field
Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002