Motion integration by neurons in macaque MT is local, not global.

نویسندگان

  • Najib J Majaj
  • Matteo Carandini
  • J Anthony Movshon
چکیده

Direction-selective neurons in primary visual cortex have small receptive fields that encode the motions of local features. These motions often differ from the motion of the object to which they belong and must therefore be integrated elsewhere. A candidate site for this integration is visual cortical area MT (V5), in which cells with large receptive fields compute the motion of patterns. Previous studies of motion integration in MT have used stimuli that fill the receptive field, and thus do not test whether motion information is really integrated across this whole area. For each MT neuron, we identified two regions ("patches") within the receptive field that were approximately equally effective in driving responses. We then measured responses to plaids whose component gratings overlapped within a patch, and compared them with responses to the same component gratings presented in separate patches. Cells that were selective for the direction of motion of the whole pattern when the gratings overlapped lost this selectivity when the gratings were separated and became selective instead for the direction of motion of the individual components. If MT cells simply pooled all of the inputs that endow them with a receptive field, they would encode all of the motions in the receptive field as belonging to a single object. Our results indicate instead that critical elements of the computations underlying pattern-direction selectivity in MT are done locally, on a scale smaller than the whole receptive field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque.

The integration of visual information is a critical task that is performed by neurons in the extrastriate cortex of the primate brain. For motion signals, integration is complicated by the geometry of the visual world, which renders some velocity measurements ambiguous and others incorrect. The ambiguity arises because neurons in the early stages of visual processing have small receptive fields...

متن کامل

Temporal and spatial limits of pattern motion sensitivity in macaque MT neurons.

Many neurons in visual cortical area MT signal the direction of motion of complex visual patterns, such as plaids composed of two superimposed drifting gratings. To compute the direction of pattern motion, MT neurons combine component motion signals over time and space. To determine the spatial and temporal limits of signal integration, we measured the responses of single MT neurons to a novel ...

متن کامل

Reduction in receptive field size of macaque MT neurons in the presence of visual noise.

The visual system faces a trade-off between increased spatial integration of disparate local signals and improved spatial resolution to filter out irrelevant noise. Increased spatial integration is beneficial when signals are weak, whereas increased spatial resolution is particularly beneficial when focusing on a small object in a cluttered natural scene. The receptive field (RF) size of visual...

متن کامل

Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion

Most neurons in cortical area MT (V5) are strongly direction selective, and their activity is closely associated with the perception of visual motion. These neurons have large receptive fields built by combining inputs with smaller receptive fields that respond to local motion. Humans integrate motion over large areas and can perceive what has been referred to as global motion. The large size a...

متن کامل

Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT

generally found that observers rely on whichever neurons are most informative about the stimulus to perform similar psychophysical tasks [6]. Here we show that the responses of neurons in the middle temporal (MT) area of macaque monkeys provide a simple resolution to this paradox. We find that surroundsuppressed MT neurons integrate motion signals relatively quickly, so that by comparison non-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2007