m at h . C A ] 9 J an 2 00 7 GENERALIZED CONVEXITY AND INEQUALITIES

نویسنده

  • M. VUORINEN
چکیده

Let R+ = (0,∞) and let M be the family of all mean values of two numbers in R+ (some examples are the arithmetic, geometric, and harmonic means). Given m1, m2 ∈ M, we say that a function f : R+ → R+ is (m1, m2)-convex if f(m1(x, y)) ≤ m2(f(x), f(y)) for all x, y ∈ R+. The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m1, m2)-convexity on m1 and m2 and give sufficient conditions for (m1, m2)-convexity of functions defined by Maclaurin series. The criteria involve the Maclaurin coefficients. Our results yield a class of new inequalities for several special functions such as the Gaussian hypergeometric function and a generalized Bessel function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudoconvex Multiobjective Continuous-time Problems and Vector Variational ‎Inequalities

In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...

متن کامل

Some existence results for generalized vector quasi-equilibrium problems

‎In this paper‎, ‎we introduce and study a class of generalized vector quasi-equilibrium problem‎, ‎which includes many vector equilibrium problems‎, ‎equilibrium problems‎, ‎vector variational inequalities and variational inequalities as special cases‎. ‎Using one person game theorems‎, ‎the concept of escaping sequences and without convexity assumptions‎, ‎we prove some existence results for ...

متن کامل

Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities

In this paper, we discuss the Schur convexity, Schur geometric convexity and Schur harmonic convexity of the generalized geometric Bonferroni mean. Some inequalities related to the generalized geometric Bonferroni mean are established to illustrate the applications of the obtained results.

متن کامل

ar X iv : m at h / 03 11 27 5 v 1 [ m at h . A P ] 1 7 N ov 2 00 3 REPRESENTATION OF MULTIVARIATE FUNCTIONS VIA THE POTENTIAL THEORY

t− a if a ≤ t ≤ x t− b if x < t ≤ b . In the last decade, many authors (see for example [2] and the references therein) have extended the above result for different classes of functions defined on a compact interval, including: functions of bounded variation, monotonic functions, convex functions, n-time differentiable functions whose derivatives are absolutely continuous or satisfy different c...

متن کامل

Opial–type Inequalities for Fractional Integral Operator Involving Mittag––leffler Function

In this paper we give generalization of Opial-type inequalities by using generalized fractional integral operator involving generalized Mittag–Leffler function. We deduce some results which already have been proved. Also we consider n -exponential convexity of some non-negative differences of inequalities involving Mittag-Leffler function and deduce their exponential convexity and log-convexity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006