Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells

نویسندگان

  • Kai Quan
  • Qun Liu
  • Jin-Yi Wan
  • Yi-Jing Zhao
  • Ru-Zhou Guo
  • Raphael N. Alolga
  • Ping Li
  • Lian-Wen Qi
چکیده

The anticancer activities of ginsenosides are widely reported. The structure-activity relationship of ginsenosides against cancer is not well elucidated because of the unavailability of these compounds. In this work, we developed a transformation method to rapidly produce rare dehydroxylated ginsenosides by acid treatment. The optimized temperature, time course, and concentration of formic acid were 120°C, 4 h and 0.01%, respectively. From 100 mg of Rh1, 8.3 mg of Rk3 and 18.7 mg of Rh4 can be produced by acid transformation. Similarly, from 100 mg of Rg3, 7.4 mg of Rk1 and 15.1 mg of Rg5 can be produced. From 100 mg of Rh2, 8.3 mg of Rk2 and 12.7 mg of Rh3 can be generated. Next, the structure-activity relationships of 23 ginsenosides were investigated by comparing their cytotoxic effects on six human cancer cells, including HCT-116, HepG2, MCF-7, Hela, PANC-1, and A549. The results showed that: (1) the cytotoxic effect of ginsenosides is inversely related to the sugar numbers; (2) sugar linkages rank as C-3 > C-6 > C-20; (3) the protopanaxadiol-type has higher activities; (4) having the double bond at the terminal C20-21 exhibits stronger activity than that at C20-22; and (5) 20(S)-ginsenosides show stronger effects than their 20(R)-stereoisomers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study

Objective: Phenolic compounds have been considered inhibitors of various cancers. Material and Methods: In this study, caffeic acid and gallic acid were appraised for their possible effects on apoptotic genes expression in a breast cancer cell line in vitro. We also evaluated ligand interaction and ligand binding with estrogen receptor alpha by m...

متن کامل

Synthesis, Evaluation of Anticancer Activity and QSAR Study of Heterocyclic Esters of Caffeic Acid

 Caffeic acid phenethyl ester(CAPE) suppresses the growth of transformed cells such as human breast cancer cells, hepatocarcinoma , myeloid leukemia, colorectal cancer cells, fibrosarcoma, glioma and melanoma. A group of heterocyclic esters of caffeic acid was synthesized using Mitsunobu reaction and the esters were subjected to further structural modification by electrooxidation of the catecho...

متن کامل

Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the ...

متن کامل

Improved antimicrobial effect of ginseng extract by heat transformation

BACKGROUND The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less pol...

متن کامل

Synthesis, Evaluation of Anticancer Activity and QSAR Study of Heterocyclic Esters of Caffeic Acid

 Caffeic acid phenethyl ester(CAPE) suppresses the growth of transformed cells such as human breast cancer cells, hepatocarcinoma , myeloid leukemia, colorectal cancer cells, fibrosarcoma, glioma and melanoma. A group of heterocyclic esters of caffeic acid was synthesized using Mitsunobu reaction and the esters were subjected to further structural modification by electrooxidation of the catecho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015