Modeling High-pressure Char Oxidation Using Langmuir Kinetics with an Effectiveness Factor
نویسندگان
چکیده
The global nth order rate equation has been criticized for lack of theoretical basis and has been shown to be inadequate for modeling char oxidation rates as a function of total gas pressure. The simple Langmuir rate equation is believed to have more potential for modeling high pressure char oxidation. The intrinsic Langmuir rate equation is applied to graphite flake oxidation data and agrees well with reaction rates at three temperatures over the entire range of oxygen pressure (1–64 atm). It also explains the change of reaction order with temperature. In this work, the intrinsic Langmuir rate equation is combined with (1) an effectiveness factor to account for pore diffusion effects and (2) a random pore structure model to calculate effective diffusivity. The resulting model is able to predict the reaction rates of large (ca. 8 mm) coal char particles as a function of gas velocity, total pressure, oxygen partial pressure, oxygen mole fraction, initial particle size, and gas temperature. This approach is also able to correlate the particle burnouts of pulverized (70 lm) coal char particles in a drop tube reactor as a function of total pressure, oxygen mole fraction, gas and wall temperatures, and residence time. The ability of the model to correlate data over wide range of temperature and pressure is promising.
منابع مشابه
Kinetic Modeling of Biomass Gasification and Combustion
This review critically examines char conversion kinetics in oxidizing or reducing atmosphere. In kinetic analysis the devolatilization of biomass and the conversion of char are usually investigated by means of separate experiments, although some kinetic models are also available of biomass combustion. The large majority of the char conversion kinetics consists of a global reaction with activati...
متن کاملNew insights into catalytic CO oxidation on Pt-group metals at elevated pressures
Producing a definitive picture of the CO oxidation reaction (CO + O2 ? CO2) on Pt-group metals (Rh, Pd, Pt, and Ru) across the ‘pressure gap’ has proved to be a challenging task. Surface-sensitive techniques amenable to high pressure environments (e.g. PM-IRAS) have sparked a renewed interest in this reaction under realistic pressures. Here, we review recent work in our laboratory examining CO ...
متن کاملThe Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics
The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...
متن کاملThe effect of model fidelity on prediction of char burnout for single-particle coal combustion
Practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully c...
متن کاملNitrogen Adsorption on Molecular Sieve Zeolites: An Experimental and Modeling Study
Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increa...
متن کامل