An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder Metallurgy
نویسندگان
چکیده
This chapter begins with an introduction of the fundamental properties of Ti-6Al-4V, and its densification mechanism, typical microstructure and mechanical property achievable by conventional PM routes. This functions as a point of reference for the following discussion of the AM Ti-6Al-4V in terms of densification, microstructure, and mechanical property. The mostly popular laser-based AM techniques, namely selective laser melting (SLM), electron beam melting (EBM), laser metal deposition (LMD) and selective laser sintering (SLS), for the fabrication of Ti-6Al-4V have been overviewed based on an analysis of over 100 individual studies. Heat treatment is essential to most of the AM Ti-6Al-4V. Principles for selecting appropriate heat treatment for the AM Ti-6Al-4V are proposed based on martensite phase transformation and optimisation of mechanical properties. Oxygen impurity is an issue to most Ti materials and it is addressed in this chapter as well; counter measurements to mitigate oxygen have been suggested which involves the use of rare earth based materials.
منابع مشابه
Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications.
The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SE...
متن کاملMicrostructure and Mechanical Properties of Direct Metal Laser Sintered Ti- 6al-4v
Direct metal laser sintering (DMLS) is a selective laser melting (SLM) manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactur...
متن کاملSelective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties
Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed...
متن کاملModeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy
A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur...
متن کاملHeat Treatment of Ti-6al-4v Produced by Lasercusing
LaserCUSING® is a selective laser melting (SLM) process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the materia...
متن کامل