Large and Tunable Polar-Toroidal Coupling in Ferroelectric Composite Nanowires toward Superior Electromechanical Responses

نویسندگان

  • W. J. Chen
  • Yue Zheng
  • Biao Wang
چکیده

The collective dipole behaviors in (BaTiO3)m/(SrTiO3)n composite nanowires are investigated based on the first-principles-derived simulations. It demonstrates that such nanowire systems exhibit intriguing dipole orders, due to the combining effect of the anisotropic electrostatic interaction of the nanowire, the SrTiO3-layer-modified electrostatic interaction and the multiphase ground state of BaTiO3 layer. Particularly, a strong polar-toroidal coupling that is tunable by the SrTiO3-layer thickness, temperature, external strains and electric fields is found to exist in the nanowires, with the appearance of fruitful dipole states (including those being purely polar, purely toroidal, both polar and toroidal, or distorted toroidal) and phase boundaries. As a consequence, an efficient cross control of the toroidal (polar) order by static (curled) electric field, and superior piezoelectric and piezotoroidal responses, can be achieved in the nanowires. The result provides new insights into the collective dipole behaviors in nanowire systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-b...

متن کامل

Ultrafast polarization response of an optically trapped single ferroelectric nanowire.

One-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices, exhibiting large nonlinear optical and piezoelectric responses. Here we present femtosecond measurements of light-induced polarization dynamics within an optically trapped ferroelectric nanowire, using the second-order nonlinear susceptibility as a real-time structural probe. Larg...

متن کامل

A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics

We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory p...

متن کامل

Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.

Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015