Particle swarm optimization for programming deep brain stimulation arrays.
نویسندگان
چکیده
OBJECTIVE Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. APPROACH Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. MAIN RESULTS The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n = 3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. SIGNIFICANCE The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.
منابع مشابه
Optimal Reconfiguration of Solar Photovoltaic Arrays Using a Fast Parallelized Particle Swarm Optimization in Confront of Partial Shading
Partial shading reduces the power output of solar modules, generates several peak points in P-V and I-V curves and shortens the expected life cycle of inverters and solar panels. Electrical array reconfiguration of PV arrays that is based on changing the electrical connections with switching devices, can be used as a practical solution to prevent such problems. Valuable studies have been perfor...
متن کاملSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملDesign of Circular Antenna Array using Particle Swarm Optimization
A new technique is proposed for the design of circular antenna arrays using particle swarm optimization. The design problem has been formulated to achieve a desired beamwidth and sidelobe level. This is accomplished by jointly optimizing the excitation amplitude and phase. The results obtained show improvement over conventional linear programming method.
متن کاملComparison of Particle Swarm Optimization and Genetic Algorithm for the Path Loss Reduction in an Urban Area
In this paper, we use the shooting and bouncing ray/image (SBR/Image) method to compute the path loss for different outdoor environments in the commercial area of Taipei. Three types of antenna arrays such as L shape, Y shape, and circular shape arrays are used in the base station and their corresponding path loss on several routes in the outdoor environment are calculated. Moreover, the geneti...
متن کاملOptimum allocation of Iranian oil and gas resources using multi-objective linear programming and particle swarm optimization in resistive economy conditions
This research presents a model for optimal allocation of Iranian oil and gas resources in sanction condition based on stochastic linear multi-objective programming. The general policies of the resistive economy include expanding exports of gas, electricity, petrochemical and petroleum products, expanding the strategic oil and gas reserves, increasing added value through completing the petroleum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2017