An asymptotic linear representation for the Breslow estimator

نویسندگان

  • Hendrik P. Lopuhaä
  • Gabriela F. Nane
چکیده

We provide an asymptotic linear representation for the Breslow estimator for the baseline cumulative hazard function in the Cox model. The representation consists of an average of independent random variables and a term involving the difference between the maximum partial likelihood estimator and the underlying regression parameter. The order of the remainder term is arbitrarily close to n−1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Partial Likelihood for Nonparametric Proportional Hazards Models.

As an alternative to the local partial likelihood method of Tibshirani and Hastie and Fan, Gijbels, and King, a global partial likelihood method is proposed to estimate the covariate effect in a nonparametric proportional hazards model, λ(t|x) = exp{ψ(x)}λ(0)(t). The estimator, ψ̂(x), reduces to the Cox partial likelihood estimator if the covariate is discrete. The estimator is shown to be consi...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Stochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models

In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...

متن کامل

Estimation in a Proportional Hazard Model for Semi-markov Counting Process

Estimation is studied in a regression model for counting processes whose baseline intensity processes are of semi-Markov form. Asymptotic normality is established for a Breslow-type estimator of the cumulative baseline hazard for each gap time of the counting process.

متن کامل

Asymptotic distribution of a simple linear estimator for VARMA models in echelon form

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011