Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors.
نویسندگان
چکیده
The orphan nuclear receptor NR2E3 is a direct transcriptional target of NRL, the key basic motif leucine zipper transcription factor that dictates rod versus cone photoreceptor cell fate in the mammalian retina. The lack of NR2E3 function in humans and in retinal degeneration rd7 mutant mouse leads to increased S-cones accompanied by rod degeneration, whereas ectopic expression of Nr2e3 in the cone-only Nrl(-/-) retina generates rod-like cells that do not exhibit any visual function. Using GFP to tag the newborn rods and by 5-bromo-2'-deoxyuridine birthdating, we demonstrate that early-born post-mitotic photoreceptor precursors in the rd7 retina express cone-specific genes. Transgenic mouse studies in the rd7 background show that Nr2e3 when expressed under the control of Crx promoter can restore rod photoreceptor function and suppress cone gene expression. Furthermore, Nr2e3 expression in photoreceptor precursors committed to be rods (driven by the Nrl promoter) could completely rescue the retinal phenotype of the rd7 mice. We conclude that excess of S-cones in the rd7 retina originate from photoreceptor precursors with a 'default' fate and not from proliferation of cones and that Nr2e3 is required to suppress the expression of S-cone genes during normal rod differentiation. These studies further support the 'transcriptional dominance' model of photoreceptor cell fate determination and provide insights into the pathogenesis of retinal disease phenotypes caused by NR2E3 mutations.
منابع مشابه
The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes.
Nr2e3 is an orphan nuclear receptor expressed specifically by retinal photoreceptor cells. Mutations in Nr2e3 result in syndromes characterized by excess blue cones and loss of rods: enhanced S-cone syndrome (ESCS) in humans and rd7 in mice. Using yeast two-hybrid screens with Nr2e3 as bait, the cone-rod homeobox protein Crx was identified as an interacting partner of Nr2e3. Immunoprecipitation...
متن کاملA Hybrid Photoreceptor Expressing Both Rod and Cone Genes in a Mouse Model of Enhanced S-Cone Syndrome
Rod and cone photoreceptors subserve vision under dim and bright light conditions, respectively. The differences in their function are thought to stem from their different gene expression patterns, morphologies, and synaptic connectivities. In this study, we have examined the photoreceptor cells of the retinal degeneration 7(rd7) mutant mouse, a model for the human enhanced S-cone syndrome (ESC...
متن کاملExcess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice.
The rd7 mouse is a model for hereditary retinal degeneration characterized clinically by retinal spotting throughout the fundus and late onset retinal degeneration, and histologically by retinal dysplasia manifesting as folds and whorls in the photoreceptor layer. This study demonstrates that the rd7 phenotype results from a splicing error created by a genomic deletion of an intron and part of ...
متن کاملThe rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes.
This study addresses one genetic regulatory mechanism that establishes the distinct identities of rod and cone photoreceptors. Previous work has shown that mutations in either humans or mice in the gene coding for photoreceptor-specific nuclear receptor Nr2e3 cause a progressive retinal degeneration characterized by increased numbers of short-wave cones. In the present work, we have examined th...
متن کاملIn vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development.
Rod and cone photoreceptors in mammalian retina are generated from common pool(s) of neuroepithelial progenitors. NRL, CRX and NR2E3 are key transcriptional regulators that control photoreceptor differentiation. Mutations in NR2E3, a rod-specific orphan nuclear receptor, lead to loss of rods, increased density of S-cones and supernormal S-cone-mediated vision in humans. To better understand its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 20 21 شماره
صفحات -
تاریخ انتشار 2011