Fracture and toughening of soft elastic composite
نویسندگان
چکیده
Characterized by their low modulus and high stretchability, soft composites have recently attracted great interest from researchers in related areas. The main objective of the present study is on the fracture property and toughening mechanism of soft composites. Two types of soft composites will be studied: soft elastic foam and the double-network (DN) composite. A theoretical/numerical study is carried out over soft elastic foams. By using the analogy between the cellular structure of foams and the network of rubbery polymers, a scaling law for the fracture energy is proposed for soft elastic foams. A phase-field model for the fracture processes in soft elastic structures is further developed to study the crack propagation in an elastic foam, and results have all achieved good agreement with the scaling law. Simulations have shown that an effective fracture energy one order of magnitude higher than the base material can be reached by using the soft foam structure. To further enhance the fracture and mechanical toughness, the second part of the thesis presents a combined experimental and theoretical study of the DN soft composite, which consists of stacked layers of fabric mesh and 3M VHB tapes. The composite exhibits a damage evolution process very similar to that in the well-known DN hydrogels. The testing results show that the strength and toughness of the DN composite is highly dependent on the composition, and in certain range, the DN composite exhibits much higher mechanical strength and toughness compared with the base materials. A 1D shear-lag model is developed to illustrate the damage-distribution toughening mechanism of the double network composite. The prediction of the model agrees well with the measured properties of the composite in various compositions. The DN composite may also be regarded as a macroscopic model of the DN gel for understanding its structure-property relation.
منابع مشابه
Evaluation of microstructure and mechanical properties of bulk nanostructured Ti5Si3 and Ti5Si3-Al2O3 nanocomposite
Mechanical alloying and vacuum sintering have been used to produce bulk nanostructured Ti5Si3 and Ti5Si3-15Wt.% Al2O3 nanocomposite. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to study the microstructural characteristics of the samples. Indentation method was used to calculate hardness, elastic modulus and fracture toughness ...
متن کاملToughening Effect of Continuous Fiber Bundles
In a continuous fiber reinforced brittle matrix composite, the transverse fracture is often dominated by the crack trapping and bridging effects as well as the fiber breakage. In this article, the toughening effect of flat fiber bundles with the cross-sectional aspect ratio, , ranging from 0.05 to 5 is discussed in the context of energy analysis. With a constant size/spacing ratio of the fiber ...
متن کاملSintering properties of zirconia-based ceramic composite
This study examines the effects of different ZrB2 content on various mechanical properties and electrical conductivity of ZrB2/Y-TZP composite. Composites with ZrB2 content of up to 20 wt-% were particularly beneficial at the lower sintering temperature range by achieving greater densification and better hardness than Y-TZP monolith. In contrast to the trends estimated from rule of mixture, the...
متن کاملToughening of epoxy matrices with reduced single-walled carbon nanotubes.
Reduced single-walled carbon nanotubes (r-SWCNT) are shown to react readily at room temperature under inert atmosphere conditions with epoxide moieties, such as those in triglycidyl p-amino phenol (TGAP), to produce a soft covalently bonded interface around the SWCNT. The soft interface is compatible with the SWCNT-free cross-linked cured matrix and acts as a toughener for the composite. Incorp...
متن کاملPhase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites
Abstract: The refractory diborides (HfB2 and ZrB2) are considered as promising ultra-high temperature ceramic (UHTCs) where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS) HfB2-ZrB2 system. Herein, a nove...
متن کامل