Enzymatic properties of two catalytic modules of Clostridium stercorarium pectate lyase Pel9A.

نویسندگان

  • Si Si Hla
  • Takuma Kikuta
  • Makiko Sakka
  • Tetsuya Kimura
  • Kazuo Sakka
چکیده

Clostridium stercorarium F-9 pectate lyase Pel9A is a modular enzyme composed of two hypothetical family-9 catalytic modules of the polysaccharide lyases, CM9-1 and CM9-2, in order from the N terminus. In this study, we constructed and characterized CM9-1 and CM9-2 polypeptides as rCM9-1 and rCM9-2 respectively. Both of them, like the full-length Pel9A, required the Ca2+ ion for their enzyme activities and showed high activity toward polygalacturonic acid but lower activity toward pectin. The specific activity of rCM9-2 was three times higher than that of rCM9-1 and rCM9-2 by itself efficiently catalyzed the depolymerization reaction of polygalacturonic acid into monosaccharide as the major product. It was found that rCM9-1 and rCM9-2 adsorbed to polygalacturonic acid and pectin on native affinity PAGE analysis, suggesting that they contain an independent carbohydrate-binding module separable from a catalytic module or consist of a catalytic module with a binding affinity for pectic substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel thermophilic pectate lyase containing two catalytic modules of Clostridium stercorarium.

The Clostridium stercorarium F-9 pel9A gene encodes a pectate lyase Pel9A consisting of 1,240 amino acids with a molecular weight of 135,171. The mature form of Pel9A is a modular enzyme composed of two family-9 catalytic modules of polysaccharide lyases, CM9-1 and CM9-2, in order from the N terminus. Pel9A showed an overall sequence similarity to the hypothetical pectate lyase PelX of Bacillus...

متن کامل

Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome.

Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzym...

متن کامل

Functional lmplications of Structure-Based Sequence Alignment of Proteins in the Extracellular Pectate Lyase SuperfamiIy'

Pectate lyases are plant virulence factors that degrade the pectate component of the plant cell wall. The enzymes share considerable sequence homology with plant pollen and style proteins, suggesting a shared structural topology and possibly functional relationships as well. The three-dimensional structures of two Erwinia chrysanthemi pectate lyases, C and E, have been superimposed and the stru...

متن کامل

Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium.

A family 22 carbohydrate-binding module (CBM22) from Clostridium stercorarium Xylanase10B raised the optimum temperature of the xylanase, but in the remaining activity of heating test, apparently the catalytic module alone showed higher remaining activity. Differential scanning calorimetry showed that CBM22 conferred resistance to thermal unfolding of the enzyme and prevented the enzyme from re...

متن کامل

Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module.

Pectate lyase 10A (Pel10A) enzyme from Pseudomonas cellulosa is composed of 649 residues and has a molecular mass of 68.5 kDa. Sequence analysis revealed that Pel10A contained a signal peptide and two serine-rich linker sequences that separate three modules. Sequence similarity was seen between the 9.2 kDa N-terminal module of Pel10A and family 2a carbohydrate-binding modules (CBMs). This N-ter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2006