Does the different photosynthetic pathway of plants affect soil respiration in a subtropical wetland?

نویسندگان

  • Jingrui Chen
  • Qiulin Wang
  • Ming Li
  • Fan Liu
  • Wei Li
چکیده

Plants with different photosynthetic pathways could produce different amounts and types of root exudates and debris which may affect soil respiration rates. Therefore, wetland vegetation succession between plants with different photosynthetic pathways may ultimately influence the wetland carbon budget. The middle and lower reaches of the Yangtze River has the largest floodplain wetland group in China. Tian'e Zhou wetland reserve (29°48'N, 112°33'E) is located in Shishou city, Hubei province and covers about 77.5 square kilometers. Hemathria altissima (C4) was found gradually being replaced by Carex argyi (C3) for several years in this place. An in situ experiment was conducted in Tian'e Zhou wetland to determine the change of soil respiration as the succession proceeds. Soil respiration, substrate-induced respiration, and bacterial respiration of the C4 species was greater than those of the C3 species, but below-ground biomass and fungal respiration of the C4 species was less than that of the C3 species. There were no significant differences in above-ground biomass between the two species. Due to the higher photosynthesis capability, higher soil respiration and lower total plant biomass, we inferred that the C4 species, H. altissima, may transport more photosynthate below-ground as a substrate for respiration. The photosynthetic pathway of plants might therefore play an important role in regulating soil respiration. As C. argyi replaces H. altissima, the larger plant biomass and lower soil respiration would indicate that the wetland in this area could fix more carbon in the soil than before.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland.

We studied the impacts of anthropogenic changes in land use on the stoichiometric imbalance of soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in Phragmites australis wetlands in the Minjiang River estuary. We compared five areas with different land uses: P. australis wetland (control), grassland, a mudskipper breeding flat, pond aquaculture and rice cropland. Human activity has...

متن کامل

Intraspecific N and P stoichiometry of Phragmites australis: geographic patterns and variation among climatic regions

Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australi...

متن کامل

Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation

Organic matter decomposition regulates rates of carbon loss (CO2 and CH4) in wetlands and has implications for carbon sequestration in the context of changing global temperature. Here we determined the influence of temperature and vegetation type on both aerobic and anaerobic decomposition of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted i...

متن کامل

Plant‐facilitated effects of exotic earthworm Pontoscolex corethrurus on the soil carbon and nitrogen dynamics and soil microbial community in a subtropical field ecosystem

Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus) and plants (living plants [native tree species Evodia lepta] and artificial plants) to investigate their combined effects on soil mi...

متن کامل

بررسی تغییرات محتوی رنگدانه‌های فتوسنتزی، پارامترهای فلورسنس کلروفیلی و عناصر غذایی در گیاه اشنان (Seidlitzia rosmarinus L.) تحت تنش شوری

Salinity is one of the major environmental stresses that adversely affect plant growth and metabolism. Salt stress affects plant physiology at both whole-plant and cellular levels through osmotic and ionic stress effects. In order to investigate the effect of different levels of salinity on photosynthetic pigment content and nutrient in Saltwort Plants (Seidlitzia rosmarinus L.), Experiment was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016