Distributed Compression of Hyperspectral Imagery

نویسندگان

  • Ngai-Man Cheung
  • Antonio Ortega
چکیده

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Hyperspectral Imagery Compression: State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Outline of This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Hyperspectral Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Dataset Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Intraband Redundancy and Cross-Band Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Limitations of Existing Hyperspectral Compression Techniques . . . . . . . . . . . . . . . . . . . 275 DSC-Based Hyperspectral Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Potential Advantages of DSC-based Hyperspectral Compression . . . . . . . . . . . . . . . . . . 278 Challenges in Applying DSC for Hyperspectral Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Example Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 DSC Techniques for Lossless Compression of Hyperspectral Images . . . . . . . . . . . . . . 280 Wavelet-based Slepian–Wolf Coding for Lossy-to-Lossless Compression of Hyperspectral Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Distributed Compression of Multispectral Images Using a Set Theoretic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering

Onboard compression of hyperspectral imagery is important for reducing the burden on downlink resources. Here we describe a novel adaptive predictive technique for lossless compression of hyperspectral data. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that is competitive with the best results from the literature. Al...

متن کامل

3d Wavelet-based Compression of Hyperspectral Imagery

Since hyperspectral imagery is generated by collecting hundreds of contiguous bands, uncompressed hyperspectral imagery can be very large, with a single image potentially occupying hundreds of megabytes. For instance, the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor is capable of collecting several gigabytes of data per day. Compression is thus necessary to facilitate both the...

متن کامل

Efficient Lossless Compression of 4D Hyperspectral Image Data

Time-lapse hyperspectral imaging technology has been used for various remote sensing applications due to its excellent capability of monitoring regions of interest over a period of time. However, large data volume of fourdimensional hyperspectral imagery demands for massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectra...

متن کامل

Hyperspectral Image Compression

“Compression of hyperspectral images holds importance because of bad transmission capability of satellites. The project is the implementation of the paper-“Satellite Hyperspectral Imagery Compression Algorithm Based on Adaptive Band Regrouping”. But during the course of the implementation many modifications have been made and some new concepts have been introduced. We have made the given regrou...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008