Laser microbeam study of a rotary motor in termite flagellates. Evidence that the axostyle complex generates torque
نویسنده
چکیده
A rotary motor in a termite flagellate continually turns the anterior part of the cell (head) in a clockwise direction. Previous descriptive observations implicated the noncontractile axostyle, which runs through the cell like a drive shaft, in the motile mechanism. This study demonstrates directly that the axostyle complex generates torque, and describes serval of its dynamic properties. By laser microbeam irradiation, the axostyle is broken into an anterior segment attached to the cell's head, and a posterior segment which projects caudally as a thin spike, or axostylar projection. Before lasing, both head and axostylar projection rotate at the same speed. After breaking the axostyle, the rotation velocity of the head decreases, depending on the length of the anterior segment. Head speed is not a linear function of axostyle length, however. In contrast, the rotation velocity of the axostylar projection always increases about 1.5 times after lasing, regardless of the length of the posterior segment. Turning the head is thus a load on the axostylar rotary motor, but the speed of the posterior segment represents the free-running motor. A third, middle segment of the axostyle, not connected to the head or axostylar projection, can also rotate independently. No ultrastructural differences were found along the length of the axostyle complex, except at the very anterior end; lenth-velocity data suggest that this region may not be able to generate torque. An electric model of the axostylar rotary motor is presented to help understand the length-velocity data.
منابع مشابه
ATP reactivation of the rotary axostyle in termite flagellates: effects of dynein ATPase inhibitors
The anterior end or head of a devescovinid flagellate from termites continually rotates in a clockwise direction relative to the rest of the cell. Previous laser microbeam experiments showed that rotational motility is caused by a noncontractile axostyle complex which runs from the head through the cell body and generates torque along its length. We report here success in obtaining glycerinated...
متن کاملRotary movements and fluid membranes in termite flagellates.
We previously described a remarkable type of cell motility that provided direct, visual evidence for the fluid nature of cell membranes. The movement involved continual, unidirectional rotation of one part of a protozoan, including the plasma membrane and cytoplasmic organelles, in relation to a neighbouring part. The cell membrane in the 'shear zone' appeared continuous with that of the rest o...
متن کاملMotility of the microtubular axostyle in Pyrsonympha
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of approximately 2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were ...
متن کاملFlagellated ectosymbiotic bacteria propel a eucaryotic cell
A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (...
متن کاملCthulhu Macrofasciculumque n. g., n. sp. and Cthylla Microfasciculumque n. g., n. sp., a Newly Identified Lineage of Parabasalian Termite Symbionts
The parabasalian symbionts of lower termite hindgut communities are well-known for their large size and structural complexity. The most complex forms evolved multiple times independently from smaller and simpler flagellates, but we know little of the diversity of these small flagellates or their phylogenetic relationships to more complex lineages. To understand the true diversity of Parabasalia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 78 شماره
صفحات -
تاریخ انتشار 1978