Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr−/− mice
نویسندگان
چکیده
OBJECTIVE Accelerated atherosclerosis is a major source of morbidity in systemic lupus erythematosus (SLE). However, the cause of SLE-accelerated atherosclerosis remains unclear. METHODS CD4(+) T cells from C57/Bl/6 (B6) or SLE-susceptible B6.Sle1.2.3 (B6.SLE) mice were transferred into LDLr(-/-), Rag(-/-) mice. T cells were examined for cytokine production and expression of interleukin-10 receptor (IL-10R) and functional markers. T cells were isolated based on FoxP3(GFP) expression and transferred to LDLr(-/-), Rag(-/-) mice to establish a role for B6.SLE effector T cells (Teff) in atherosclerosis. RESULTS Mice receiving whole B6.SLE CD4(+) T cells displayed no other SLE phenotype; however, atherosclerosis was increased nearly 40%. We noted dysregulated IL-17 production and reduced frequency of IL-10R expression by B6.SLE regulatory T cells (Treg). Functional assays indicated resistance of B6.SLE Teff to suppression by both B6.SLE and B6 Treg. Transfer experiments with CD4(+)FoxP3(-) Teff and CD4(+)FoxP3(+) Treg from B6.SLE and B6 mice, respectively, resulted in increased atherosclerosis compared with B6 Teff and Treg recipients. Treg isolated from mice receiving B6.SLE Teff with B6 Treg had increased production of IL-17 and fewer expressed IL-10R compared with B6 Teff and Treg transfer. CONCLUSIONS Transfer of B6.SLE Teff to LDLr(-/-), Rag(-/-) mice results in accelerated atherosclerosis independent of the source of Treg. In addition, the presence of B6.SLE Teff resulted in more IL-17-producing Treg and fewer expressing IL-10R, suggesting that B6.SLE Teff may mediate phenotypic changes in Treg. To our knowledge, this is the first study to provide direct evidence of the role of B6.SLE Teff in accelerating atherosclerosis through resistance to Treg suppression.
منابع مشابه
Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice.
T lymphocyte responses promote proatherogenic inflammatory events, which are influenced by costimulatory molecules of the B7 family. Effects of negative regulatory members of the B7 family on atherosclerosis have not been described. Programmed death-ligand 1 (PD-L1) and PD-L2 are B7 family members expressed on several cell types, which inhibit T cell activation via binding to programmed death-1...
متن کاملConstitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4+ T-Cell Responses-Brief Report.
OBJECTIVE Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is expressed on CD4(+) effector memory T cells and regulatory T cells; however, its role on these functionally opposing cell types in atherosclerosis is not fully understood. APPROACH AND RESULTS Low-density lipoprotein receptor-deficient mice (Ldlr(-/-)) were lethally irradiated and reconstituted wi...
متن کاملDistinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia
OBJECTIVE Although the accelerating effect of systemic lupus erythematosus (SLE) on atherosclerosis is well established, the underlying mechanisms are unknown. The aim of this study was to explore the hypothesis that lupus autoimmunity modulates the effect of hypercholesterolemia in driving arterial pathologic development. METHODS Low-density lipoprotein receptor-deficient (Ldlr(-/-) ) mice w...
متن کاملMHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity.
BACKGROUND Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive. METHODS AND RESULTS Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre × Tcf4(-/flox) bone...
متن کاملX-Box Binding Protein-1 Dependent Plasma Cell Responses Limit the Development of Atherosclerosis.
RATIONALE Diverse B cell responses and functions may be involved in atherosclerosis. Protective antibody responses, such as those against oxidized lipid epitopes, are thought to mainly derive from T cell-independent innate B cell subsets. In contrast, both pathogenic and protective roles have been associated with T cell-dependent antibodies, and their importance in both humans and mouse models ...
متن کامل