Learning state machine-based string edit kernels
نویسندگان
چکیده
During the past few years, several works have been done to derive string kernels from probability distributions. For instance, the Fisher kernel uses a generative model M (e.g. a hidden markov model) and compares two strings according to how they are generated by M . On the other hand, the marginalized kernels allow the computation of the joint similarity between two instances by summing conditional probabilities. In this paper, we adapt this approach to edit distance-based conditional distributions and we present a way to learn a new string edit kernel. We show that the practical computation of such a kernel between two strings x and x built from an alphabet Σ requires (i) to learn edit probabilities in the form of the parameters of a stochastic state machine and (ii) to calculate an infinite sum over Σ by resorting to the intersection of probabilistic automata as done for rational kernels. We show on a handwritten character recognition task that our new kernel outperforms not only the state of the art string kernels and string edit kernels but also the standard edit distance used by a neighborhood-based classifier.
منابع مشابه
MAUL: Machine Agent User Learning∗
We describe implementation of a classifier for User-Agent strings using Support Vector Machines. The best kernel is found to be the linear kernel, even when more complicated string based kernels, such as the edit distance kernel and the subsequence kernel, are employed. A robust tokenization scheme is employed which dramatically speeds up the calculation for the edit string and subsequence kern...
متن کاملPositive Definite Rational Kernels
Kernel methods are widely used in statistical learning techniques. We recently introduced a general kernel framework based on weighted transducers or rational relations, rational kernels, to extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. These kernels are efficient to compute and have been successfully used in applications such as spoken-...
متن کاملLearning from Uncertain Data
The application of statistical methods to natural language processing has been remarkably successful over the past two decades. But, to deal with recent problems arising in this field, machine learning techniques must be generalized to deal with uncertain data, or datasets whose elements are distributions over sequences, such as weighted automata. This paper reviews a number of recent results r...
متن کاملRational Kernels: Theory and Algorithms
Many classification algorithms were originally designed for fixed-size vectors. Recent applications in text and speech processing and computational biology require however the analysis of variable-length sequences and more generally weighted automata. An approach widely used in statistical learning techniques such as Support Vector Machines (SVMs) is that of kernel methods, due to their computa...
متن کاملTwo New Graph Kernels and Applications to Chemoinformatics
Chemoinformatics is a well established research field concerned with the discovery of molecule’s properties through informational techniques. Computer science’s research fields mainly concerned by the chemoinformatics field are machine learning and graph theory. From this point of view, graph kernels provide a nice framework combining machine learning techniques with graph theory. Such kernels ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 43 شماره
صفحات -
تاریخ انتشار 2010