Physical Modeling with the 2-D Digital Waveguide Mesh
نویسندگان
چکیده
An extremely efficient method for modeling wave propagation in a membrane is provided by the multidimensional extension of the digital waveguide. The 2-D digital waveguide mesh is constructed out of bidirectional delay units and scattering junctions. We show that it coincides with the standard finite difference approximation scheme for the 2-D wave equation, and we derive the dispersion error. Applications may be found in physical models of drums, soundboards, cymbals, gongs, small-box reverberators, and other acoustic constructs where a one-dimensional model is less desirable.
منابع مشابه
Room Impulse Response Modeling in the Sub-2kHz Band using 3-D Rectangular Digital Waveguide Mesh
Digital waveguide mesh has emerged as an efficient and straightforward way to model small room impulse response because it solves the wave equation directly in the time domain. In this paper, we investigate the performance of the 3-D rectangular digital waveguide mesh in modeling the low frequency portion of room impulse response. We find that it has similar performance compared to the popular ...
متن کاملHyper-dimensional Digital Waveguide Mesh for Reverberation Modeling
Characteristics of digital waveguide meshes with more than three physical dimensions are studied. Especially, the properties of a 4-D mesh are analyzed and compared to waveguide structures of lower dimensionalities. The hypermesh produces a response with a dense and irregular modal pattern at high frequencies, which is beneficial in modeling the reverberation of rooms or musical instrument bodi...
متن کاملInterpolated and Warped 2-d Digital Waveguide Mesh Algorithms
Interpolated and warped digital waveguide mesh algorithms have been developed to overcome the problem caused by direction and frequency-dependence of wave travel speed in digital waveguide mesh simulations. This paper reviews the interpolation methods applicable in the two-dimensional case. The bilinear interpolation technique and two other approaches are briefly recapitulated. The use of 2-D q...
متن کاملFrequency-dependent Boundary Condition for the 3-d Digital Waveguide Mesh
The three-dimensional digital waveguide mesh is a method for modeling the propagation of sound waves in space. It provides a simulation of the state of the whole soundfield at discrete timesteps. The updating functions of the mesh can be formulated either using physical values of sound pressure or particle velocity, also called the Kirchhoff values, or using a wave decomposition of these instea...
متن کاملSpatial Audio and Reverberation Modeling Using Hyperdimensional Digital Waveguide Meshes
Characteristics of digital waveguide meshes with more than three physical dimensions are studied. Especially, the properties of a 4-D mesh are analyzed and compared to waveguide structures of lower dimensionalities. The hypermesh produces a response with a dense and irregular modal pattern at high frequencies, which is beneficial in modeling the reverberation of rooms or musical instrument bodi...
متن کامل