Hilbert Functions of Gorenstein Monomial Curves

نویسنده

  • FEZA ARSLAN
چکیده

It is a conjecture due to M. E. Rossi that the Hilbert function of a one-dimensional Gorenstein local ring is non-decreasing. In this article, we show that the Hilbert function is non-decreasing for local Gorenstein rings with embedding dimension four associated to monomial curves, under some arithmetic assumptions on the generators of their defining ideals in the noncomplete intersection case. In order to obtain this result, we determine the generators of their tangent cones explicitly by using standard basis computations under these arithmetic assumptions and show that the tangent cones are Cohen-Macaulay. In the complete intersection case, by characterizing certain families of complete intersection numerical semigroups, we give an inductive method to obtain large families of complete intersection local rings with arbitrary embedding dimension having non-decreasing Hilbert functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Ideals and the Gorenstein Liaison Class of a Complete Intersection

In an earlier work the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen-Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically CohenMacaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage ...

متن کامل

Hilbert Functions of Irreducible Arithmetically Gorenstein Schemes

In this paper we compute the Hilbert functions of irreducible (or smooth) and reduced arithmetically Gorenstein schemes that are twisted anti-canonical divisors on arithmetically Cohen-Macaulay schemes. We also prove some folklore results characterizing the Hilbert functions of irreducible standard determinantal schemes, and we use them to produce a new class of functions that occur as Hilbert ...

متن کامل

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Square Functions for Bi-lipschitz Maps and Directional Operators

First we prove a Littlewood-Paley diagonalization result for bi-Lipschitz perturbations of the identity map on the real line. This result entails a number of corollaries for the Hilbert transform along lines and monomial curves in the plane. Second, we prove a square function bound for a single scale directional operator. As a corollary we give a new proof of part of a theorem of Katz on direct...

متن کامل

A Characterization of Gorenstein Hilbert Functions in Codimension Four with Small Initial Degree

The main goal of this paper is to characterize the Hilbert functions of all (artinian) codimension 4 Gorenstein algebras that have at least two independent relations of degree four. This includes all codimension 4 Gorenstein algebras whose initial relation is of degree at most 3. Our result shows that those Hilbert functions are exactly the so-called SI-sequences starting with (1, 4, h2, h3, .....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007