Likelihood inference for small variance components
نویسندگان
چکیده
The authors explore likelihood-based methods for making inferences about the components of variance in a general normal mixed linear model. In particular, they use local asymptotic approximations to construct confidence intervals for the components of variance when the components are close to the boundary of the parameter space. In the process, they explore the question of how to profile the restricted likelihood (REML). Also, they show that general REML estimates are less likely to fall on the boundary of the parameter space than maximum likelihood estimates and that the likelihood ratio test based on the local asymptotic approximation has higher power than the likelihood ratio test based on the usual chi-squared approximation. They examine the finite sample properties of the proposed intervals by means of a simulation study.
منابع مشابه
Accurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملBayesian inference for generalized linear mixed models.
Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to directly acknowledge multiple levels of dependency and model different data types. For small sample sizes especially, likelihood-based inference can be unreliable with variance components being particularly difficult to estimate. A Bayesian approach is appealing but has been hampered by the lack of a ...
متن کاملThe use of score tests for inference on variance components.
Whenever inference for variance components is required, the choice between one-sided and two-sided tests is crucial. This choice is usually driven by whether or not negative variance components are permitted. For two-sided tests, classical inferential procedures can be followed, based on likelihood ratios, score statistics, or Wald statistics. For one-sided tests, however, one-sided test statis...
متن کاملMultiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference.
A set of FORTRAN programs to implement a multiple-trait Gibbs sampling algorithm for (co)variance component inference in animal models (MTGSAM) was developed. The MTGSAM programs are available to the public. The programs support models with correlated genetic effects and arbitrary numbers of covariates, fixed effects, and independent random effects for each trait. Any combination of missing tra...
متن کاملMultiple-Trait Gibbs Sampler for Animal Models: Flexible Programs for Bayesian and Likelihood-Based (Co)Variance Component Inference
A set of FORTRAN programs to implement a multiple-trait Gibbs sampling algorithm for (co)variance component inference in animal models (MTGSAM) was developed. The MTGSAM programs are available to the public. The programs support models with correlated genetic effects and arbitrary numbers of covariates, fixed effects, and independent random effects for each trait. Any combination of missing tra...
متن کامل