On designing non-saccharide, allosteric activators of antithrombin.
نویسندگان
چکیده
Antithrombin, a plasma glycoprotein serpin, requires conformational activation by heparin to induce an anticoagulant effect, which is mediated through accelerated factor Xa inhibition. Heparin, a highly charged polymer and an allosteric activator of the serpin, is associated with major adverse effects. To design better, but radically different activators of antithrombin from heparin, we utilized a pharmacophore-based approach. A tetrahydroisoquinoline-based scaffold was designed to mimic four critical anionic groups of the key trisaccharide DEF constituting the sequence-specific pentasaccharide DEFGH in heparin. Activator IAS(5) containing 5,6-disulfated tetrahydroisoquinoline and 3,4,5-trisulfated phenyl rings was found to bind antithrombin at pH 7.4 with an affinity comparable to the reference trisaccharide DEF. IAS(5) activated the inhibitor nearly 30-fold, nearly 2- to 3-fold higher than our first generation flavanoid-based designs. This work advances the concept of antithrombin activation through non-saccharide, organic molecules and pinpoints a direction for the design of more potent molecules.
منابع مشابه
Exploring new non-sugar sulfated molecules as activators of antithrombin.
New non-sugar, small, sulfated molecules, based on our de novo rationally designed activator (-)-epicatechin sulfate (ECS), were investigated to bind and activate antithrombin, an inhibitor of plasma coagulation enzyme factor Xa. For the activators studied, the equilibrium dissociation constant (K(D)) of the interaction with plasma antithrombin varies nearly 53-fold, with the highest affinity o...
متن کاملInteraction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators.
Recently, we designed (-)-epicatechin sulfate (ECS), the first small nonsaccharide molecule, as an activator of antithrombin for the accelerated inhibition of factor Xa, a key proteinase of the coagulation cascade (Gunnarsson, G. T.; Desai, U. R. J. Med. Chem. 2002, 45, 1233-1243). Although sulfated flavanoid ECS was found to bind antithrombin with an affinity ( approximately 10.7 microM) compa...
متن کاملNew antithrombin-based anticoagulants.
Clinically used anticoagulants are inhibitors of enzymes involved in the coagulation pathway, primarily thrombin and factor Xa. These agents can be either direct or indirect inhibitors of clotting enzymes. Heparin-based anticoagulants are indirect inhibitors that enhance the proteinase inhibitory activity of a natural anticoagulant, antithrombin. Despite its phenomenal success, current anticoag...
متن کاملMechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin.
To determine the role of individual saccharide residues of a specific heparin pentasaccharide, denoted DEFGH, in the allosteric activation of the serpin, antithrombin, we studied the effect of deleting pentasaccharide residues on this activation. Binding, spectroscopic, and kinetic analyses demonstrated that deletion of reducing-end residues G and H or nonreducing-end residue D produced variabl...
متن کاملAntithrombin activation by nonsulfated, non-polysaccharide organic polymer.
Accelerated antithrombin inhibition of procoagulant enzymes has been exclusively achieved with polysulfated polysaccharides. We reasoned that antithrombin activation should be possible with nonsulfated activators based only on carboxylic acid groups. As a proof of the principle, linear poly(acrylic acid)s were found to bind to antithrombin and accelerate inhibition of factor Xa and thrombin. Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of medicinal chemistry
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2009