Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails.

نویسندگان

  • T F Duda
  • S R Palumbi
چکیده

In order to investigate the evolution of conotoxin multigene families among two closely related vermivorous CONUS: species, we sequenced 104 four-loop conotoxin mRNAs from two individuals of CONUS: ebraeus and compared these with sequences already obtained from CONUS: abbreviatus. In contrast to the diversity of conotoxin sequences obtained from C. abbreviatus, only two common sequence variants were recovered from C. ebraeus. Segregation patterns of the variants in these two individuals and restriction digests of four-loop conotoxin amplification products from nine additional individuals suggest that the common variants are alleles from a single locus. These two putative alleles differ at nine positions that occur nonrandomly in the toxin-coding region of the sequences. Moreover, all substitutions are at nonsynonymous sites and are responsible for seven amino acid differences among the predicted amino acid sequences of the alleles. These results imply that conotoxin diversity is driven by strong diversifying selection and some form of frequency-dependent or overdominant selection at conotoxin loci, and they suggest that diverse conotoxin multigene families can originate from duplications at polymorphic loci. Furthermore, none of the sequences recovered from C. ebraeus appeared to be orthologs of loci from C. abbreviatus, and attempts to amplify orthologous sequences with locus-specific primers were unsuccessful among these species. These patterns suggest that venoms of closely related CONUS: species may differ due to the differential expression of conotoxin loci.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails

Venomous animals are thought to inject the same combination of toxins for both predation and defence, presumably exploiting conserved target pharmacology across prey and predators. Remarkably, cone snails can rapidly switch between distinct venoms in response to predatory or defensive stimuli. Here, we show that the defence-evoked venom of Conus geographus contains high levels of paralytic toxi...

متن کامل

Toxinology of Marine Venomous Snails

A surprisingly large number of sea snail species are venomous. Cone snail venoms are produced in a lengthy tubular duct from a complex venom gland and form a cocktail of many toxins, particularly conotoxins which have high potency and specificity for their target specific receptors. They inhibit various channels, neuromuscular receptors or hormones of the victim, and interfere in the transmitte...

متن کامل

Extensive and continuous duplication facilitates rapid evolution and diversification of gene families.

The origin of novel gene functions through gene duplication, mutation, and natural selection represents one of the mechanisms by which organisms diversify and one of the possible paths leading to adaptation. Nonetheless, the extent, role, and consequences of duplications in the origins of ecological adaptations, especially in the context of species interactions, remain unclear. To explore the e...

متن کامل

Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus.

Predatory snails in the marine gastropod genus Conus stun prey by injecting a complex mixture of peptide neurotoxins. These conotoxins are associated with trophic diversification and block a diverse array of ion channels and neuronal receptors in prey species, but the evolutionary genesis of this functional diversity is unknown. Here we show that conotoxins with little amino acid similarity are...

متن کامل

Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone.

Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2000