On the Approximation of Irrational Numbers with Rationals Restricted by Congruence Relations

نویسنده

  • C. Eisner
چکیده

Usually this theorem is proved by using continued fractions; see Theorem 193 in [2]. S. Hartman [3] has restricted the approximating numbers f to those fractions, where u and v belong to fixed residue classes a and b with respect to some modulus s. He proved the following: For any irrational number £, any s > 1, and integers a and b, there are infinitely many integers u and v > 0 satisfying 2s (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Some explicit badly approximable pairs

I consider the Diophantine approximation problem of sup-norm simultaneous rational approximation with common denominator of a pair of irrational numbers, and compute explicitly some pairs with large approximation constant. One of these pairs is the most badly approximable pair yet computed. The theory of approximation of a single irrational number by rationals is well known, and for our purpose...

متن کامل

Approximating reals by sums of two rationals

We generalize Dirichlet's diophantine approximation theorem to approximating any real number α by a sum of two rational numbers a 1 q 1 + a 2 q 2 with denominators 1 ≤ q1, q2 ≤ N. This turns out to be related to the congruence equation problem xy ≡ c (mod q) with 1 ≤ x, y ≤ q 1/2+ǫ .

متن کامل

Diophantine Approximation in Finite Characteristic

In contrast to Roth’s theorem that all algebraic irrational real numbers have approximation exponent two, the distribution of the exponents for the function field counterparts is not even conjecturally understood. We describe some recent progress made on this issue. An explicit continued fraction is not known even for a single non-quadratic algebraic real number. We provide many families of exp...

متن کامل

Approximation Exponents for Function Fields

For diophantine approximation of algebraic real numbers by rationals, Roth’s celebrated theorem settles the issue of the approximation exponent completely in the number field case. But in spite of strong analogies between number fields and function fields, its naive analogue fails in function fields of finite characteristic, and the situation is not even conjecturally understood. In this short ...

متن کامل

Series of Error Terms for Rational Approximations of Irrational Numbers

Let pn/qn be the n-th convergent of a real irrational number α, and let εn = αqn−pn. In this paper we investigate various sums of the type ∑ m εm, ∑ m |εm|, and ∑ m εmx m. The main subject of the paper is bounds for these sums. In particular, we investigate the behaviour of such sums when α is a quadratic surd. The most significant properties of the error sums depend essentially on Fibonacci nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996