Noninvasive monitoring of glucose concentration using differential absorption low-coherence interferometry based on rapid scanning optical delay line
نویسندگان
چکیده
A non-invasive method of detecting glucose concentration using differential absorption low-coherence interferometry (DALCI) based on rapid scanning optical delay line is presented. Two light sources, one centered within (1625 nm) a glucose absorption band, while the other outside (1310 nm) the glucose absorption band, are used in the experiment. The low-coherence interferometry (LCI) is employed to obtain the signals back-reflecting from the iris which carries the messages of material concentration in anterior chamber. Using rapid scanning optical delay line (RSOD) as the reference arm, we can detect the signals in a very short time. Therefore the glucose concentration can be monitored in real-time, which is very important for the detection in vivo. In our experiments, the cornea and aqueous humor can be treated as nearly non-scattering substance. The difference in the absorption coefficient is much larger than the difference in the scattering coefficient, so the influence of scattering can be neglected. By subtracting the algorithmic low-coherence interference signals of the two wavelengths, the absorption coefficient can be calculated which is proportional to glucose concentration. To reduce the speckle noise, a 30 variation of signals were used before the final calculation of the glucose concentration. The improvements of our experiment are also discussed in the article. The method has a potential application for noninvasive detection of glucose concentration in vivo and in real-time.
منابع مشابه
Electronically controlled coherent linear optical sampling for optical coherence tomography.
Electronically controlled coherent linear optical sampling for low coherence interferometry (LCI) and optical coherence tomography (OCT) is demonstrated, using two turn-key commercial mode-locked fiber lasers with synchronized repetition rates. This novel technique prevents repetition rate limitations present in previous implementations based on asynchronous optical sampling. Adjustable scannin...
متن کاملSpecificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study.
Noninvasive monitoring of blood glucose concentration in diabetic patients would significantly reduce complications and mortality associated with this disease. In this paper, we experimentally and theoretically studied specificity of noninvasive blood glucose monitoring with the optical coherence tomography (OCT) technique. OCT images and signals were obtained from skin of Yucatan micropigs and...
متن کاملDispersion manipulation in optical coherence tomography with Fourier-domain optical delay line
In the last decade, Fourier-domain optical delay lines (FD-ODL) based on pulse shaping technology have emerged as a practical device for high-speed scanning and dispersion compensation in imaging interferometry such as optical coherence tomography(OCT). In this study, we investigate the effect of firstand second-order dispersion on the photocurrent signal associated with a fiber-optic OCT syste...
متن کاملPhotonic Crystal Fiber for Medical Applications
Optical coherence tomography (OCT) is a new technology for noninvasive cross-sectional imaging of tissue structure in biological system by directing a focused beam of light at the tissue to be image [Bouma et al., 1995; Jiang et al., 2005; Ryu et al., 2005]. The technique measures the optical pulse time delay and intensity of backscattered light using interferometry with broadband light sources...
متن کاملInnovative Experimental Concepts for Optical Coherence Tomography
Optical Coherence Tomography (OCT) is a recent biomedical imaging technique based on low-coherence interferometry that is capable of acquiring depth-resolved reflectivity maps of scattering tissues with high sensitivity. The conventionally employed imaging mode is to build up a cross sectional image by scanning the sample surface with a point illumination. In order to increase imaging speed, th...
متن کامل