Estradiol and tamoxifen regulate endostatin generation via matrix metalloproteinase activity in breast cancer in vivo.

نویسندگان

  • Ulrika W Nilsson
  • Charlotta Dabrosin
چکیده

Matrix metalloproteinases (MMP) are important regulators of tumor progression and angiogenesis. MMPs generate both proangiogenic and antiangiogenic fragments, such as vascular endothelial growth factor and endostatin. The in vivo activation of MMPs and endostatin generation occur mainly in the extracellular environment by interactions of different cell types. Therefore, these processes are necessary to study in the extracellular space in vivo. Sex steroids play a dominant role in breast carcinogenesis, by largely unknown mechanisms. In the present study, we used in vivo microdialysis to directly quantify MMP-2 and MMP-9 activity and sample endostatin from both stroma (murine) and tumor (human) cells in vivo in solid MCF-7 tumors in nude mice. We found that tamoxifen in combination with estradiol increased tumor MMP-2/MMP-9 in vivo activity, endostatin levels, and decreased tumor vascularization compared with estradiol treatment only. The stroma-derived endostatin was three to five times higher than cancer cell-generated endostatin. After inhibition of MMP-2/MMP-9, endostatin levels decreased, providing evidence that these proteases are highly involved in the generation of endostatin. Our results support the previously reported concept that MMPs may serve as negative regulators of angiogenesis. The regulation of endostatin generation by modulation of MMP-2/MMP-9 activities suggests a previously unrecognized mechanism of estradiol and tamoxifen, which may have implications for the pathogenesis of breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo.

Matrix metalloproteinases (MMP) are important regulators of angiogenesis and tumor progression by degradation of extracellular matrix. Clinical trials using MMP inhibitors have failed and recent studies suggest that MMPs may in contrast suppress tumor growth. It is not known, however, if MMPs or their inhibitors, tissue inhibitor of metalloproteinases (TIMP), can be used as therapy of establish...

متن کامل

Tamoxifen decreases extracellular TGF-beta1 secreted from breast cancer cells--a post-translational regulation involving matrix metalloproteinase activity.

Transforming growth factor-beta1 (TGF-beta1) promotes cancer progression by regulating tumor cell growth and angiogenesis and high levels of TGF-beta1 have been associated with metastatic disease and poor prognosis in breast cancer patients. We have previously reported anti-angiogenic effects of the anti-estrogen tamoxifen in breast cancer, by increased matrix metalloproteinase-9 (MMP-9) activi...

متن کامل

Increased endostatin generation and decreased angiogenesis via MMP-9 by tamoxifen in hormone dependent ovarian cancer.

There are several similarities between breast and ovarian cancer but anti-estrogen treatment is rarely used in ovarian cancer. We have previously shown that the most widely used anti-estrogen tamoxifen increased MMP-9 activity and endostatin generation in breast cancer. Here, we show that tamoxifen exposure of highly hormone responsive ovarian cancer cells decreased proliferation, and increased...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2006