Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons.

نویسندگان

  • Gautier Roussignol
  • Fabrice Ango
  • Stefano Romorini
  • Jian Cheng Tu
  • Carlo Sala
  • Paul F Worley
  • Joël Bockaert
  • Laurent Fagni
چکیده

Shank proteins assemble glutamate receptors with their intracellular signaling apparatus and cytoskeleton at the postsynaptic density. Whether Shank plays a role in spinogenesis and synaptogenesis remained unclear. Here, we report that knock-down of Shank3/prolinerich synapse-associated protein-2 by RNA interference reduces spine density in hippocampal neurons. Moreover, transgene expression of Shank 3 is sufficient to induce functional dendritic spines in aspiny cerebellar neurons. Transfected Shank protein recruits functional glutamate receptors, increases the number and size of synaptic contacts, and increases amplitude, frequency, and the AMPA component of miniature EPSCs, similar to what is observed during synapse developmental maturation. Mutation/deletion approaches indicate that these effects require interactions of Shank3 with the glutamate receptor complex. Consistent with this observation, chronic treatment with glutamate receptor antagonists alters maturation of the Shank3-induced spines. These results strongly suggest that Shank proteins and the associated glutamate receptors participate in a concerted manner to form spines and functional synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a.

The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank t...

متن کامل

Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer

The Shank family of proteins interacts with NMDA receptor and metabotropic glutamate receptor complexes in the postsynaptic density (PSD). Targeted to the PSD by a PDZ-dependent mechanism, Shank promotes the maturation of dendritic spines and the enlargement of spine heads via its ability to recruit Homer to postsynaptic sites. Shank and Homer cooperate to induce accumulation of IP3 receptors i...

متن کامل

SPIN90 Phosphorylation Modulates Spine Structure and Synaptic Function

The correct rearrangement of postsynaptic components in dendritic spines is important for driving changes of spine structure and synaptic function. SPIN90 plays an essential role in many cellular processes including actin polymerization, endocytosis, growth cone formation and dendritic spine morphogenesis. Here, we demonstrate that SPIN90, which is a binding partner of PSD95 and Shank in spines...

متن کامل

Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons.

Kalirin, a multifunctional Rho GDP/GTP exchange factor, plays a vital role in cytoskeletal organization, affecting process initiation and outgrowth in neurons. Through alternative splicing, the Kalirin gene generates multiple functionally distinct proteins. Kalirin-7 (Kal7) is the most prevalent isoform in the adult rat hippocampus; it terminates with a postsynaptic density-95 (PSD-95)/Discs la...

متن کامل

Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons

Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 14  شماره 

صفحات  -

تاریخ انتشار 2005