Phosphorus distribution in sinking oceanic particulate matter
نویسندگان
چکیده
Despite the recognition of the importance of phosphorus (P) in regulating marine productivity in some modern oceanic systems and over long timescales, the nature of particulate P within the ocean is not well understood. We analyzed P concentration in particulate matter from sediment traps and selected core tops from a wide range of oceanic regimes: open ocean environments (Equatorial Pacific, North Central Pacific), polar environments (Ross Sea, Palmer Deep), and coastal environments (Northern California Coast, Monterey Bay, Point Conception). These sites represent a range of productivity levels, temporal (seasonal to annual) distributions, and trap depths (200–4400 m). P associations were identified using an operationally defined sequential extraction procedure. We found that P in the sediment traps is typically composed of reactive P components including acid-insoluble organic P (~40%), authigenic P (~25%), and oxide associated and/or labile P (~21%), with lesser proportions of non-reactive detrital P depending on location (~13%). The concentrations and fluxes of all particulate P components except detrital P decrease or remain constant with depth between the shallowest and the deepest sediment traps, indicating some regeneration of reactive P components. Transformation from more labile forms of P to authigenic P is evident between the deepest traps and core top sediments. Although for most sites the magnitudes of reactive P fluxes are seasonally variable and productivity dependent, the fractional associations of reactive P are independent of season. We conclude that P is transported from the upper water column to the sediments in various forms previously considered unimportant. Thus, acid-insoluble organic P measurements (typically reported as particulate organic P) likely underestimate biologically related particulate P, because they do not include the labile, oxide-associated, or authigenic P fractions that often are or recently were biologically related. Organic C to reactive P ratios are typically higher than Redfield Ratio and are relatively constant with depth below ~300 m suggesting that preferential regeneration of P relative to C occurs predominantly at shallow depths in the water column, but not deeper in the water column (N300 m). The view of P cycling in the oceans should be revised (1) to include P fractions other than acid-soluble organic P as important carriers of reactive P in rapidly sinking particles, (2) to include the efficient transformation of labile forms of P
منابع مشابه
Selective phosphorus regeneration of sinking marine particles: evidence from P-NMR
Phosphorus (P) regeneration and transformation in the oceanic water column and in marine sediments depends on the chemical nature of the sinking particulate P pool. For the first time, we have characterized the molecular composition of this pool, in various oceanic settings and water depths, using P nuclear magnetic resonance (NMR) spectroscopy. Both inorganic P (orthophosphate, pyrophosphate, ...
متن کاملInteractive comment on “Modeling the dynamical sinking of biogenic particles in oceanic flow” by
The manuscript "Modeling the dynamical sinking of biologenic particles in oceanic flow" presents an interesting study of particle sedimentation in realistic oceanic flows. In particular, it focuses in a simplified dynamics accounting for gravitational settling and also scrutinizes the effect of additional terms such as that due to Coriolis force (accounting for rotation) and inertial terms. The...
متن کاملPhosphorus imbalance in the global ocean?
[1] The phosphorus budget of the prehuman modern ocean is constrained applying the most recent estimates of the natural riverine, eolian, and ice‐rafted input fluxes; the phosphorus burial in marine sediments; and the hydrothermal removal of dissolved phosphate from the deep ocean. This review of current flux estimates indicates that the phosphorus budget of the ocean is unbalanced since the ac...
متن کاملParticle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic
In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (< 5 μmol O2 kg−1) show a lower carbon flux attenuation compared to welloxygenated waters (> 100...
متن کاملOceanic biogeochemical controls on global dynamics of persistent organic pollutants.
Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biog...
متن کامل