Spinal muscular atrophy treatment via targeting smn2 catalytic core
نویسندگان
چکیده
Spinal muscular atrophy treatment via targeting smn2 catalytic core" (2014). Iowa State University Patents. Paper 317. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 82 days. See application ?le for complete search history. An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing " , RNA (2010), pp. 1-15. (57) ABSTRACT The present invention is directed to methods and composi tions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucle otide reagents (e.g., oligoribonucleotides) that effectively tar get sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the pro cessed transcript. The short target regions are 8-mers and 5-mers and also include the identi?cation of a single nucle otide base that is essential for initiating a long distance stearic inhibitory interactions as well as novel targets distant from intron 7 which block the intronic inhibitory splicing of the same. These short target regions and concomitant inhibitory blocking oligonucleotides are less expensive and easier to manufacture and are small enough to cross the blood brain barrier.
منابع مشابه
Improved Antisense Oligonucleotide Design to Suppress Aberrant SMN2 Gene Transcript Processing: Towards a Treatment for Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated int...
متن کاملAntisense oligonucleotide mediated therapy of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA results from deletions or mutations of survival motor neuron 1 (SMN1), an essential gene. SMN2, a nearly identical copy, can compensate for SMN1 loss if SMN2 exon 7 skipping is prevented. Among the many cis-elements involved in the splicing regulation of SMN exon 7, intronic splicing silencer N1 (ISS-N1) has eme...
متن کاملTargeting SR Proteins Improves SMN Expression in Spinal Muscular Atrophy Cells
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because S...
متن کاملA short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. Most SMA cases are associated with the low levels of SMN owing to deletion of Survival Motor Neuron 1 (SMN1). SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to predominant skipping of exon 7. Hence, correction of aberrant splicing of SMN2 exon 7 holds the potential for cure of SM...
متن کاملThe Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy
The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enri...
متن کامل