Approximate MaxEnt Inverse Optimal Control and Its Application for Mental Simulation of Human Interactions

نویسندگان

  • De-An Huang
  • Amir-massoud Farahmand
  • Kris M. Kitani
  • J. Andrew Bagnell
چکیده

Maximum entropy inverse optimal control (MaxEnt IOC) is an effective means of discovering the underlying cost function of demonstrated human activity and can be used to predict human behavior over low-dimensional state spaces (i.e., forecasting of 2D trajectories). To enable inference in very large state spaces, we introduce an approximate MaxEnt IOC procedure to address the fundamental computational bottleneck stemming from calculating the partition function via dynamic programming. Approximate MaxEnt IOC is based on two components: approximate dynamic programming and Monte Carlo sampling. We analyze this approximation approach and provide a finite-sample error upper bound on its excess loss. We validate the proposed method in the context of analyzing dual-agent interactions from video, where we use approximate MaxEnt IOC to simulate mental images of a single agents body pose sequence (a high-dimensional image space). We experiment with sequences image data taken from RGB and RGBD data and show that it is possible to learn cost functions that lead to accurate predictions in highdimensional problems that were previously intractable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate MaxEnt Inverse Optimal Control and its Application for Mental Simulation of Human Interactions (Extended Version with Proofs)

Maximum entropy inverse optimal control (MaxEnt IOC) is an effective means of discovering the underlying cost function of demonstrated human activity and can be used to predict human behavior over low-dimensional state spaces (i.e., forecasting of 2D trajectories). To enable inference in very large state spaces, we introduce an approximate MaxEnt IOC procedure to address the fundamental computa...

متن کامل

Approximate MaxEnt Inverse Optimal Control

Maximum entropy inverse optimal control (MaxEnt IOC) is an effective means of discovering the underlying cost function of demonstrated agent’s activity. To enable inference in large state spaces, we introduce an approximate MaxEnt IOC procedure to address the fundamental computational bottleneck stemming from calculating the partition function via dynamic programming. Approximate MaxEnt IOC is ...

متن کامل

Examination of Quadrotor Inverse Simulation Problem Using Trust-Region Dogleg Solution Method

In this paper, the particular solution technique for inverse simulation applied to the quadrotor maneuvering flight is investigated. The ‎trust-region dogleg (DL) technique which is proposed alleviates the weakness of Newton’s method used for numerical differentiation of system states in the solution process. The proposed technique emphasizes global convergence solution to the inverse simulatio...

متن کامل

Nonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot

This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...

متن کامل

An application of differential transform method for solving nonlinear optimal control problems

In this paper, we present a capable algorithm for solving a class of nonlinear optimal control problems (OCP's). The approach rest mainly on the differential transform method (DTM) which is one of the approximate methods. The DTM is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. Utilizing this approach, the optimal co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015