Detoxification of 1,1,2-Trichloroethane to Ethene by Desulfitobacterium and Identification of Its Functional Reductase Gene

نویسندگان

  • Siyan Zhao
  • Chang Ding
  • Jianzhong He
چکیده

1,1,2-trichloroethane (1,1,2-TCA) has become a common groundwater pollutant due to historically extensive utilization, improper disposal, as well as from incomplete dechlorination of 1,1,2,2-tetrachloroethane. Currently, limited information is available on microbial detoxification of 1,1,2-TCA. Desulfitobacterium sp. strain PR, which was isolated from an anaerobic bioreactor maintained to dechlorinate chloroethenes/ethanes, exhibited the capacity to dechlorinate 1,1,1-trichloroethane and chloroform. In this study, the dechlorinating ability of strain PR was further explored. Strain PR showed the capability to dechlorinate 1,1,2-TCA (~1.12 mM) predominantly to 1,2-dichloroethane (1,2-DCA) and chloroethane, and to trace amounts of vinyl chloride and ethene within 20 days. Strain PR coupled growth with dechlorination of 1,1,2-TCA to 1,2-DCA, while no cell growth was observed with dechlorination of 1,2-DCA to chloroethane. Later, through transcriptomic and enzymatic analysis, the reductive dehalogenase CtrA, which was previously reported to be responsible for 1,1,1-trichloroethane and chloroform dechlorination, was identified as the 1,1,2-TCA reductive dehalogenase. Since trichloroethene (TCE) is usually co-contaminated with 1,1,2-TCA, a co-culture containing Dehalococcoides mccartyi strain 11a capable of detoxifying TCE and 1,2-DCA and strain PR was established. Interestingly, this co-culture dechlorinated 1,1,2-TCA and TCE to the non-toxic end-product ethene within 48 days without chloroethane production. This novel pathway avoids production of the carcinogenic intermediate dechlorination product vinyl chloride, providing a more environmentally friendly strategy to treat 1,1,2-TCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene.

Dehalobacter and "Dehalococcoides" spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp. from this mixed culture in coculture with an Acetobacterium sp. Through a series of serial tr...

متن کامل

Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes.

Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two gen...

متن کامل

Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution.

Accumulation of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated ethenes and ethanes due to its high toxicity. Since there can be several possible sources of VC and ethene at such sites, assessing the origin and fate of VC can be complicated. Aim of this study was to evaluate carbon isotope fractionation associated with various anaerobic processes that lead to ...

متن کامل

Bioassay of 1,1,2-trichloroethane for possible carcinogenicity.

A bioassay of technical-grade 1,1,2-trichloroethane for possible carcinogenicity was conducted using Osborne-Mendel rats and B6C3F1 mice. 1,1,2-Trichloroethane in corn oil was administered by gavage, at either of two dosages, to groups of 50 male and 50 female animals of each species, 5 days a week for a period of 78 weeks, followed by an observation period of up to 35 weeks for rats and up to ...

متن کامل

Non-hydrogen-bonding-based, solvent-dependent helix inversion between pure P-helix and pure M-helix in poly(quinoxaline-2,3-diyl)s bearing chiral side chains.

Poly(quinoxaline-2,3-diyl)s bearing chiral (R)-2-butoxy side chains adopt pure right- or left-handed screw senses in CHCl(3) and 1,1,2-trichloroethane, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015