ar X iv : 0 80 5 . 12 35 v 2 [ m at h . G R ] 3 0 Ju n 20 09 SCHUR – WEYL DUALITY OVER FINITE FIELDS

نویسنده

  • STEPHEN DOTY
چکیده

We prove a version of Schur–Weyl duality over finite fields. We prove that for any field k, if k has at least r + 1 elements, then Schur– Weyl duality holds for the rth tensor power of a finite dimensional vector space V . Moreover, if the dimension of V is at least r + 1, the natural map kSr → EndGL(V )(V ) is an isomorphism. This isomorphism may fail if dimk V is not strictly larger than r.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 6 . 24 12 v 1 [ m at h . G R ] 1 5 Ju n 20 08 Compactly supported cohomology of buildings

We compute the compactly supported cohomology of the standard realization of any locally finite building. AMS classification numbers. Primary: 20F65 Secondary: 20E42, 20F55, 20J06, 57M07.

متن کامل

ar X iv : 0 80 9 . 15 36 v 2 [ m at h . D G ] 1 5 Ju n 20 09 Tight Lagrangian surfaces in S 2 × S 2 ∗ Hiroshi

We determine all tight Lagrangian surfaces in S2×S2. In particular, globally tight Lagrangian surfaces in S2 × S2 are nothing but real forms.

متن کامل

ar X iv : 0 81 1 . 40 90 v 3 [ m at h . Q A ] 2 3 Ju n 20 09 MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

ar X iv : m at h / 03 09 39 5 v 1 [ m at h . R T ] 2 4 Se p 20 03 A ( n , n ) - GRADED LIE SUPERALGEBRAS

We determine the Lie superalgebras over fields of characteristic zero that are graded by the root system A(n, n) of the special linear Lie superalgebra psl(n + 1, n + 1).

متن کامل

ar X iv : 0 80 6 . 01 70 v 3 [ m at h . Q A ] 1 9 Ja n 20 09 WEIGHT MULTIPLICITY POLYNOMIALS OF MULTI - VARIABLE WEYL MODULES

This paper is based on the observation that dimension of weight spaces of multi-variable Weyl modules depends polynomially on the highest weight (Conjecture 1). We support this conjecture by various explicit answers for up to three variable cases and discuss the underlying combinatorics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009