Finding Fullerene Patches in Polynomial Time
نویسندگان
چکیده
We consider the following question, motivated by the enumeration of fullerenes. A fullerene patch is a 2-connected plane graph G in which inner faces have length 5 or 6, non-boundary vertices have degree 3, and boundary vertices have degree 2 or 3. The degree sequence along the boundary is called the boundary code of G. We show that the question whether a given sequence S is a boundary code of some fullerene patch can be answered in polynomial time when such patches have at most five 5-faces. We conjecture that our algorithm gives the correct answer for any number of 5-faces, and sketch how to extend the algorithm to the problem of counting the number of different patches with a given boundary code.
منابع مشابه
Finding Fullerene Patches in Polynomial Time I: Counting Hexagonal Patches
A hexagonal patch is a plane graph in which inner faces have length 6, inner vertices have degree 3, and boundary vertices have degree 2 or 3. We consider the following counting problem: given a sequence of twos and threes, how many hexagonal patches exist with this degree sequence along the outer face? This problem is motivated by the study of benzenoid hydrocarbons and fullerenes in computati...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملStudy of fullerenes by their algebraic properties
The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3- connected graphs with entirely 12 pentagonal faces and n/2 -10 hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.
متن کامل