On the stability of a finite difference scheme with two weights for wave equation with nonlocal conditions
نویسندگان
چکیده
We consider the stability of a finite difference scheme with two weight parameters for a hyperbolic equation with nonlocal integral boundary conditions. We obtain stability region in the complex plane by investigating the characteristic equation of a difference scheme using the root criterion.
منابع مشابه
A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملOn the Stability of Locally One-dimensional Method for Two-dimensional Parabolic Equation with Nonlocal Integral Conditions
We construct and analyse a locally one-dimensional method (finite-difference scheme) for a two-dimensional parabolic equation with nonlocal integral conditions. The main attention is paid to the stability of the method. We apply the stability analysis technique which is based on the investigation of the spectral structure of the transition matrix of a finite-difference scheme and demonstrate th...
متن کامل