The Neuropilin 1 Cytoplasmic Domain Is Required for VEGF-A-Dependent Arteriogenesis
نویسندگان
چکیده
Neuropilin 1 (NRP1) plays an important but ill-defined role in VEGF-A signaling and vascular morphogenesis. We show that mice with a knockin mutation that ablates the NRP1 cytoplasmic tail (Nrp1(cyto)) have normal angiogenesis but impaired developmental and adult arteriogenesis. The arteriogenic defect was traced to the absence of a PDZ-dependent interaction between NRP1 and VEGF receptor 2 (VEGFR2) complex and synectin, which delayed trafficking of endocytosed VEGFR2 from Rab5+ to EAA1+ endosomes. This led to increased PTPN1 (PTP1b)-mediated dephosphorylation of VEGFR2 at Y(1175), the site involved in activating ERK signaling. The Nrp1(cyto) mutation also impaired endothelial tubulogenesis in vitro, which could be rescued by expressing full-length NRP1 or constitutively active ERK. These results demonstrate that the NRP1 cytoplasmic domain promotes VEGFR2 trafficking in a PDZ-dependent manner to regulate arteriogenic ERK signaling and establish a role for NRP1 in VEGF-A signaling during vascular morphogenesis.
منابع مشابه
Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling
In development and disease, vascular endothelial growth factor (VEGF) regulates the expansion of the vascular tree. In response to hypoxia, VEGF promotes new capillary formation through the process of angiogenesis by inducing endothelial cell sprouting, proliferation, and migration. Wound healing, tissue regeneration, and tumor growth depend on angiogenesis for adequate nutrient and oxygen deli...
متن کاملPeripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback.
In developing limb skin, peripheral nerves are required for arterial differentiation, and guide the pattern of arterial branching. In vitro experiments suggest that nerve-derived VEGF may be important for arteriogenesis, but its role in vivo remains unclear. Using a series of nerve-specific Cre lines, we show that VEGF derived from sensory neurons, motoneurons and/or Schwann cells is required f...
متن کاملNeuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis
Neuropilin 1 (NRP1) is a receptor for class 3 semaphorins and vascular endothelial growth factor (VEGF) A and is essential for cardiovascular development. Biochemical evidence supports a model for NRP1 function in which VEGF binding induces complex formation between NRP1 and VEGFR2 to enhance endothelial VEGF signalling. However, the relevance of VEGF binding to NRP1 for angiogenesis in vivo ha...
متن کاملNeuropilin-1/GIPC1 Signaling Regulates α5β1 Integrin Traffic and Function in Endothelial Cells
Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEG...
متن کاملImatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1–dependent ABL1 activation in endothelial cells
To enable new blood vessel growth, endothelial cells (ECs) express neuropilin 1 (NRP1), and NRP1 associates with the receptor tyrosine kinase VEGFR2 after binding the vascular endothelial growth factor A (VEGF) to enhance arteriogenesis. We report that NRP1 contributes to angiogenesis through a novel mechanism. In human and mouse ECs, the integrin ligand fibronectin (FN) stimulated actin remode...
متن کامل