Imaging Cellular Inorganic Phosphate in Caenorhabditis elegans Using a Genetically Encoded FRET-Based Biosensor
نویسندگان
چکیده
Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient. Here we demonstrate the utility of a genetically encoded FRET-based Pi sensor to assess cellular Pi levels in the nematode Caenorhabditis elegans. The sensor was expressed in different cells and tissues of the animal, including head neurons, tail neurons, pharyngeal muscle, and the intestine. Cytosolic Pi concentrations were monitored using ratiometric imaging. Injection of phosphate buffer into intestinal cells confirmed that the sensor was responsive to changes in Pi concentration in vivo. Live Pi imaging revealed cell-specific and developmental stage-specific differences in cytosolic Pi concentrations. In addition, cellular Pi levels were perturbed by food deprivation and by exposure to the respiratory inhibitor cyanide. These results suggest that Pi concentration is a sensitive indicator of metabolic status. Moreover, we propose that live Pi imaging in C. elegans is a powerful approach to discern mechanisms that govern Pi distribution in individual cells and throughout an animal.
منابع مشابه
A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane comp...
متن کاملMonitoring Biosensor Activity in Living Cells with Fluorescence Lifetime Imaging Microscopy
Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events,...
متن کاملReal Time Monitoring of Intracellular Bile Acid Dynamics Using a Genetically Encoded FRET-based Bile Acid Sensor.
Förster Resonance Energy Transfer (FRET) has become a powerful tool for monitoring protein folding, interaction and localization in single cells. Biosensors relying on the principle of FRET have enabled real-time visualization of subcellular signaling events in live cells with high temporal and spatial resolution. Here, we describe the application of a genetically encoded Bile Acid Sensor (BAS)...
متن کاملBlue Fluorescent cGMP Sensor for Multiparameter Fluorescence Imaging
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca(2+). Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors i...
متن کاملImaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice.
The use of biosynthetic fluorescent sensors is an important new approach for imaging Ca(2+) in cells. Genetically encoded indicators based on green fluorescent protein, calmodulin, and fluorescence resonance energy transfer (FRET) have been utilized to measure Ca(2+) in nonmammalian transgenic organisms and provide information about the organization and regulation of Ca(2+) signaling events in ...
متن کامل