A New Analysis of Block Preconditioners for Saddle Point Problems

نویسنده

  • Yvan Notay
چکیده

We consider symmetric saddle point matrices. We analyze block preconditioners based on the knowledge of a good approximation for both the top left block and the Schur complement resulting from its elimination. We obtain bounds on the eigenvalues of the preconditioned matrix that depend only of the quality of these approximations, as measured by the related condition numbers. Our analysis applies to indefinite block diagonal preconditioners, block triangular preconditioners, inexact Uzawa preconditioners, block approximate factorization preconditioners, and a further enhancement of these latter based on symmetric block Gauss-Seidel type iterations. The analysis is unified and allows the comparison of these different approaches. In particular, it reveals that block triangular and inexact Uzawa preconditioners lead to identical eigenvalue distributions. These theoretical results are illustrated on the discrete Stokes problem. It turns out that the provided bounds allow to localize accurately both real and non real eigenvalues. The relative quality of the different types of preconditioners is also as expected from the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *

We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...

متن کامل

Preconditioners for Generalized Saddle-Point Problems

We propose and examine block-diagonal preconditioners and variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. That is, we consider the nonsymmetric, nonsingular case where the (2,2) block is small in norm, and we are particularly concerned with the case where the (1,2) block is different from the transposed (2,1) block. We provide theoretical and exper...

متن کامل

New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1,1) Blocks

We establish two types of block triangular preconditioners applied to the linear saddle point problems with the singular 1,1 block. These preconditioners are based on the results presented in the paper of Rees and Greif 2007 . We study the spectral characteristics of the preconditioners and show that all eigenvalues of the preconditioned matrices are strongly clustered. The choice of the parame...

متن کامل

Preconditioned Hss-like Iterative Method for Saddle Point Problems

A new HSS-like iterative method is first proposed based on HSS-like splitting of nonHermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we consider the solution of saddle point systems by preconditioned Krylov subspace method and discuss some spectral properties of the preconditioned saddle point matrices. Numerical experimen...

متن کامل

An Implicit Approximate Inverse Preconditioner for Saddle Point Problems

We present a preconditioner for saddle point problems which is based on an approximation of an implicit representation of the inverse of the saddle point matrix. Whereas this preconditioner does not require an approximation to the Schur complement, its theoretical analysis yields some interesting relationship to some Schurcomplement-based preconditioners. Whereas the evaluation of this new prec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014