Effect of F8 B domain gene variants on synthesis, secretion, activity and stability of factor VIII protein.

نویسندگان

  • Saskia Pahl
  • Anna Pavlova
  • Julia Driesen
  • Johannes Oldenburg
چکیده

The B domain of the coagulation factor (F)VIII comprises some unique characteristics. Though the B domain is important for processing, intracellular transport and secretion of FVIII protein, its role in the coagulation still remains unclear. This study aims to investigate the influence of 19 reported B domain variants on quantity and quality of expressed FVIII protein. F8 variants were transiently expressed in HEK293T cells. Media and cell lysates were collected after 72 hours. FVIII synthesis, relative secretion, activity and thermostability were analysed in comparison to FVIII wild-type. Eleven of 19 analysed B domain variants showed normal FVIII activity (FVIII:C), and antigen values (40-150 %). Eight variants exhibited a decreased FVIII:C, corresponding to a mild phenotype most likely due to impaired expression and secretion mechanism, reduced thermostability or combined mechanisms. One variant, p.His1066Tyr, showed markedly reduced FVIII antigen in cell lysate. The variants p.Asp845Glu, p.His998Gln, and p.Ala1610Ser revealed a significantly decreased relative secretion. Additionally, six B domain variants significantly reduced stability of FVIII. In conclusion, none of the analysed missense mutations was causative for a severe haemophilia A (HA) phenotype. Nevertheless, the mutations p.Asp845Glu, p.Pro947Arg, p.Glu1057Lys, p.His1066Tyr, p.Arg1126Trp, p.Arg1329His, p.Leu1481Pro, and p.Ala1610Ser resulted in decreased FVIII:C values that may explain mild HA phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells

Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...

متن کامل

Genotyping of Intron 22 and Intron 1 Inversions of Factor VIII Gene Using an Inverse-Shifting PCR Method in an Iranian Family with Severe Haemophilia A

Abstract Background: Haemophilia A (HA) is an X-linked bleeding disorder caused by the absence or reduced activity of coagulation factor VIII (FVIII). Coagulation factors are a group of related proteins that are essential for the formation of blood clots. The aim of this study was to genotype the coagulation factor VIII gene mutations using Inverse Shifting PCR (IS-PCR) in an Iranian family ...

متن کامل

Functional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII

Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...

متن کامل

Identification of deep intronic variants in 15 haemophilia A patients by next generation sequencing of the whole factor VIII gene.

Current screening methods for factor VIII gene (F8) mutations can reveal the causative alteration in the vast majority of haemophilia A patients. Yet, standard diagnostic methods fail in about 2% of cases. This study aimed at analysing the entire intronic sequences of the F8 gene in 15 haemophilia A patients by next generation sequencing. All patients had a mild to moderate phenotype and no mut...

متن کامل

THE ROLE OF VARIOUS STABILIZERS IN THE ACQUISITION OF THERMO-TOLER ANCE IN FACTOR VIII ACTIVITY

We prepared a highly purified and relatively heat stable form of factor VIII which contained 25 units per mL (u/mL) activity using PEG-4000 and developed an effective and new manufacturing process. Heat treatment was performed at 80°C for 72 hrs in the presence of different stabilizers. In our studies, we used different organic solvents as preservatives to maintain factor VIII activity, sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thrombosis and haemostasis

دوره 111 1  شماره 

صفحات  -

تاریخ انتشار 2014